通过界面调控 g-CN 实现高效的芳香族有机污染物降解的类芬顿增强催化作用。
Enhanced Fenton-like catalysis via interfacial regulation of g-CN for efficient aromatic organic pollutant degradation.
机构信息
College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
Fuzhou Ecological Environment Promotion and Education Center, Fuzhou, 350000, China.
出版信息
Environ Pollut. 2024 Sep 1;356:124341. doi: 10.1016/j.envpol.2024.124341. Epub 2024 Jun 7.
For the efficient degradation of organic pollutants with the goal of reducing the water environment pollution, we employed an alkaline hydrothermal treatment on primeval g-CN to synthesize a hydroxyl-grafted g-CN (CN-0.5) material, from which we engineered a novel Fenton-like catalyst, known as Cu-CN-0.5. The introduction of numerous hydroxyl functional groups allowed the CN-0.5 substrate to stably fix active copper oxide particles through surface complexation, resulting in a low Cu leaching rate during a Cu-CN-0.5 Fenton-like process. A sequence of characterization techniques and theoretical calculations uncovered that interfacial complexation induced charge redistribution on the Cu-CN-0.5 surface. Specifically, some of the π electrons in the tris-s-triazine units were transferred to the copper oxide particles along the newly formed chemical bonds (C-O-Cu), forming a π-deficient area on the tris-s-triazine plane near the complexation site. In a typical Cu-CN-0.5 Fenton-like process, a stable π-π interaction was established due to the favorable positive-negative match of electrostatic potential between the aromatic pollutants and π-deficient areas, leading to a significant improvement in Cu-CN-0.5's adsorption capacity for aromatic pollutants. Furthermore, pollutants also delivered electrons to the Cu-CN-0.5 Fenton-like system via a "through-space" approach, which suppressed the futile oxidation of HO in reducing the high-valent Cu and significantly improved the generation efficiency of OH with high oxidative capacity. As expected, Cu-CN-0.5 not only exhibited an efficient Fenton degradation for several typical aromatic organic pollutants, but also demonstrated both a low metal leaching rate (0.12 mg/L) and a HO utilization rate exceeding 80%. The distinctive Fenton degradation mechanism substantiated the potential of the as-prepared material for effective wastewater treatment applications.
为了有效降解有机污染物,减少水污染,我们采用碱性水热法对原始 g-CN 进行处理,合成了一种羟基接枝的 g-CN(CN-0.5)材料,并在此基础上设计了一种新型类 Fenton 催化剂,即 Cu-CN-0.5。大量羟基官能团的引入使 CN-0.5 基质通过表面络合稳定地固定活性氧化铜颗粒,从而在 Cu-CN-0.5 类 Fenton 过程中实现了低的 Cu 浸出率。一系列的表征技术和理论计算揭示了界面络合诱导 Cu-CN-0.5 表面的电荷重新分布。具体来说,三嗪单元中的一些π电子沿着新形成的化学键(C-O-Cu)转移到氧化铜颗粒上,在配位位置附近的三嗪平面上形成一个π-缺陷区域。在典型的 Cu-CN-0.5 类 Fenton 过程中,由于芳香族污染物和π-缺陷区域之间静电势能的有利正负匹配,建立了稳定的π-π相互作用,导致 Cu-CN-0.5 对芳香族污染物的吸附能力显著提高。此外,污染物也通过“隔空”途径向 Cu-CN-0.5 类 Fenton 体系传递电子,抑制了 HO 的无效氧化,从而降低了高价位 Cu 的消耗,并显著提高了具有高氧化能力的 OH 的生成效率。不出所料,Cu-CN-0.5 不仅对几种典型的芳香族有机污染物表现出高效的 Fenton 降解,而且还表现出低的金属浸出率(0.12 mg/L)和超过 80%的 HO 利用率。独特的 Fenton 降解机制证明了所制备材料在有效废水处理应用中的潜力。