Suppr超能文献

人工智能在头颈部癌症单能 CT 图像域物质分解中的应用。

Artificial intelligence-based image-domain material decomposition in single-energy computed tomography for head and neck cancer.

机构信息

Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.

Division of Radiation Oncology, Kansai Medical University Hospital, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2024 Mar;19(3):541-551. doi: 10.1007/s11548-023-03058-y. Epub 2024 Jan 14.

Abstract

PURPOSE

While dual-energy computed tomography (DECT) images provide clinically useful information than single-energy CT (SECT), SECT remains the most widely used CT system globally, and only a few institutions can use DECT. This study aimed to establish an artificial intelligence (AI)-based image-domain material decomposition technique using multiple keV-output learning of virtual monochromatic images (VMIs) to create DECT-equivalent images from SECT images.

METHODS

This study involved 82 patients with head and neck cancer. Of these, the AI model was built with data from the 67 patients with only DECT scans, while 15 patients with both SECT and DECT scans were used for SECT testing. Our AI model generated VMI and VMI from VMI equivalent to 120-kVp SECT images. We introduced a loss function for material density images (MDIs) in addition to the loss for VMIs. For comparison, we trained the same model with the loss for VMIs only. DECT-equivalent images were generated from SECT images and compared with the true DECT images.

RESULTS

The prediction time was 5.4 s per patient. The proposed method with the MDI loss function quantitatively provided more accurate DECT-equivalent images than the model trained with the loss for VMIs only. Using real 120-kVp SECT images, the trained model produced precise DECT images of excellent quality.

CONCLUSION

In this study, we developed an AI-based material decomposition approach for head and neck cancer patients by introducing the loss function for MDIs via multiple keV-output learning. Our results suggest the feasibility of AI-based image-domain material decomposition in a conventional SECT system without a DECT scanner.

摘要

目的

虽然双能计算机断层扫描(DECT)图像比单能计算机断层扫描(SECT)提供了更有临床价值的信息,但SECT 仍然是全球使用最广泛的 CT 系统,只有少数机构能够使用 DECT。本研究旨在建立一种基于人工智能(AI)的图像域物质分解技术,使用多 keV 输出学习虚拟单色图像(VMIs),从 SECT 图像创建 DECT 等效图像。

方法

本研究纳入了 82 例头颈部癌症患者。其中,AI 模型是基于仅接受 DECT 扫描的 67 例患者的数据建立的,而 15 例患者同时接受了 SECT 和 DECT 扫描以进行 SECT 测试。我们的 AI 模型从 120 kVp SECT 图像生成了 VMI 和 VMI 等效的 VMIs。我们除了 VMIs 的损失函数外,还引入了物质密度图像(MDIs)的损失函数。为了比较,我们仅使用 VMIs 的损失函数训练了相同的模型。从 SECT 图像生成 DECT 等效图像,并与真实的 DECT 图像进行比较。

结果

每个患者的预测时间为 5.4 秒。与仅使用 VMIs 损失函数训练的模型相比,引入 MDIs 损失函数的方法在定量上提供了更准确的 DECT 等效图像。使用真实的 120 kVp SECT 图像,训练后的模型生成了质量极佳的精确 DECT 图像。

结论

在这项研究中,我们通过引入多 keV 输出学习的 MDIs 损失函数,为头颈部癌症患者开发了一种基于 AI 的物质分解方法。我们的研究结果表明,在没有 DECT 扫描仪的常规 SECT 系统中,基于 AI 的图像域物质分解是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验