Penrose Roger
Mathematical Institute, Oxford, Oxfordshire OX2 6GG, UK.
Philos Trans A Math Phys Eng Sci. 2024 Mar 4;382(2267):20230041. doi: 10.1098/rsta.2023.0041. Epub 2024 Jan 15.
This paper describes conservation laws in general relativity (GR) dating back to the mass-energy conservation of Bondi and Sachs in the early 1960s but using 2-spinor techniques. The notion of conformal infinity is employed, and the highly original ideas of E. T. Newman are discussed in relation to twistor theory. The controversial NP constants are introduced, and their meaning is considered in a new light related to the problem of equations of motion in GR. This article is part of a discussion meeting issue 'At the interface of asymptotics, conformal methods and analysis in general relativity'.
本文描述了广义相对论(GR)中的守恒定律,其可追溯到20世纪60年代初邦迪(Bondi)和萨克斯(Sachs)的质能守恒,但使用的是二旋量技术。文中采用了共形无穷远的概念,并结合扭量理论讨论了E.T.纽曼(E.T.Newman)极具原创性的观点。引入了有争议的NP常数,并从与广义相对论中运动方程问题相关的新角度考虑了它们的意义。本文是“广义相对论中的渐近性、共形方法与分析的交叉点”这一讨论会议文集的一部分。