Frauendiener Jörg
Institut für Theoretische Astrophysik, Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen Germany.
Living Rev Relativ. 2000;3(1):4. doi: 10.12942/lrr-2000-4. Epub 2000 Aug 23.
The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
共形无穷远的概念在爱因斯坦引力理论的研究中有着悠久的历史。如今,“共形无穷远”几乎与广义相对论研究的所有其他分支都相关,从量子化程序到抽象数学问题再到数值应用。这篇综述文章试图展示这个概念是如何从物理问题中逐渐且不可避免地演变而来的,即理解引力理论中的引力辐射和孤立系统的需求,以及它如何非常自然地适用于解决数值相对论中的辐射问题。引入了零无穷远的基本概念。介绍了弗里德里希的正则共形场方程,并讨论了它们的各种初值问题。最后,表明共形场方程在数值相对论中提供了一种非常强大的方法来研究诸如引力波传播和探测等全局问题。