College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
Biotechnol Adv. 2024 Mar-Apr;71:108317. doi: 10.1016/j.biotechadv.2024.108317. Epub 2024 Jan 12.
The separation of specific cell populations is instrumental in gaining insights into cellular processes, elucidating disease mechanisms, and advancing applications in tissue engineering, regenerative medicine, diagnostics, and cell therapies. Microfluidic methods for cell separation have propelled the field forward, benefitting from miniaturization, advanced fabrication technologies, a profound understanding of fluid dynamics governing particle separation mechanisms, and a surge in interdisciplinary investigations focused on diverse applications. Cell separation methodologies can be categorized according to their underlying separation mechanisms. Passive microfluidic separation systems rely on channel structures and fluidic rheology, obviating the necessity for external force fields to facilitate label-free cell separation. These passive approaches offer a compelling combination of cost-effectiveness and scalability when compared to active methods that depend on external fields to manipulate cells. This review delves into the extensive utilization of passive microfluidic techniques for cell separation, encompassing various strategies such as filtration, sedimentation, adhesion-based techniques, pinched flow fractionation (PFF), deterministic lateral displacement (DLD), inertial microfluidics, hydrophoresis, viscoelastic microfluidics, and hybrid microfluidics. Besides, the review provides an in-depth discussion concerning cell types, separation markers, and the commercialization of these technologies. Subsequently, it outlines the current challenges faced in the field and presents a forward-looking perspective on potential future developments. This work hopes to aid in facilitating the dissemination of knowledge in cell separation, guiding future research, and informing practical applications across diverse scientific disciplines.
特定细胞群体的分离对于深入了解细胞过程、阐明疾病机制以及推进组织工程、再生医学、诊断和细胞治疗等领域的应用具有重要意义。微流控技术在细胞分离领域取得了显著进展,得益于其微型化、先进的制造技术、对控制颗粒分离机制的流体动力学的深刻理解,以及针对各种应用的跨学科研究的激增。细胞分离方法可以根据其基本的分离机制进行分类。被动微流控分离系统依赖于通道结构和流体流变学,无需外部力场即可实现无标记细胞分离。与依赖外部场来操纵细胞的主动方法相比,这些被动方法具有成本效益高和可扩展性强的优势。
本综述深入探讨了被动微流控技术在细胞分离中的广泛应用,涵盖了各种策略,如过滤、沉降、基于粘附的技术、夹流分馏(PFF)、定向迁移(DLD)、惯性微流控、电泳、粘弹性微流控和混合微流控。此外,本综述还详细讨论了细胞类型、分离标记物以及这些技术的商业化问题。随后,它概述了该领域目前面临的挑战,并对未来的潜在发展提出了前瞻性的观点。
本工作旨在促进细胞分离知识的传播,为未来的研究提供指导,并为不同科学领域的实际应用提供信息。