Department of Neurosurgery, Tokai University.
Neurol Med Chir (Tokyo). 2024 Feb 15;64(2):93-99. doi: 10.2176/jns-nmc.2023-0149. Epub 2024 Jan 15.
The pathophysiology of syringomyelia remains poorly understood. Two prevailing challenges stand out: the need for a comprehensive understanding of its diverse types and the yet-to-be-explained mechanism of cerebrospinal fluid (CSF) retention in the syrinx despite its higher pressure than that in the adjacent subarachnoid space. Expanding on our previous proposal that direction-selective resistance to subarachnoid CSF flow drives syringomyelia genesis, this study uses a computer model to explore this mechanism further. We developed a computer simulation model to study spinal CSF dynamics, employing a lumped parameter approach with multiple compartments. This model replicated the to-and-fro movement of CSF in the spinal subarachnoid space and within an intraspinal channel. Subsequently, a direction-selective resistance-opposing only the caudal subarachnoid CSF flow-was introduced at a specific location within the subarachnoid space. Following the introduction of the direction-selective resistance, a consistent pressure increase was observed in the intraspinal channel downstream of the resistance. Importantly, this increase in pressure accumulated with every cycle of to-and-fro CSF flow. The accumulation results from the pressure drop across the resistance, and its effect on the spinal cord matrix creates a pumping action in the intraspinal channel. Our findings elucidate the mechanisms underlying our hypothesis that a direction-selective resistance to subarachnoid CSF flow causes syringomyelia. This comprehensively explains the various types of syringomyelia and resolves the puzzle of CSF retention in the syrinx despite a pressure gradient.
脊髓空洞症的病理生理学仍未被充分理解。有两个突出的挑战:需要全面了解其多种类型,以及尽管脑脊液(CSF)在空洞中的压力高于邻近的蛛网膜下腔,但 CSF 保留在空洞中的机制仍未得到解释。在我们之前提出的方向选择性抵抗蛛网膜下腔 CSF 流动驱动脊髓空洞症发生的基础上,本研究使用计算机模型进一步探讨了这一机制。我们开发了一种计算机模拟模型来研究脊髓 CSF 动力学,采用具有多个腔室的集中参数方法。该模型复制了 CSF 在脊髓蛛网膜下腔和脊髓内通道中的往返运动。随后,在蛛网膜下腔的特定位置引入了一种仅对尾部蛛网膜下腔 CSF 流动产生方向选择性阻力的阻力。在引入方向选择性阻力后,在阻力下游的脊髓内通道中观察到压力持续增加。重要的是,这种压力增加随着 CSF 往返流动的每一个周期而积累。这种积累是由于阻力处的压降引起的,其对脊髓基质的影响在脊髓内通道中产生了泵送作用。我们的研究结果阐明了我们的假设的机制,即蛛网膜下腔 CSF 流动的方向选择性阻力导致了脊髓空洞症。这全面解释了各种类型的脊髓空洞症,并解决了尽管存在压力梯度但 CSF 仍保留在空洞中的难题。