Bai Yuting, Hao Derek, Feng Sisi, Lu Liping, Wang Qi
Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
Department of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Jinzhong, Shanxi, 030600, China.
Phys Chem Chem Phys. 2024 Jan 31;26(5):3832-3841. doi: 10.1039/d3cp04499h.
Herein, we report a novel 1/GO/FeO photocatalyst, comprising Ce(BTB)(HO) (MOF-1, HBTB = 1,3,5-benzenetrisbenzoic acid), graphene oxide (GO), and iron oxide (FeO) for photocatalytic degradation of chlortetracycline (CTC). This design enables the effective transfer of electrons from the MOF to GO, thereby reducing the photoelectron-hole recombination rate. Therefore, the optimized 1/GO/FeO photocatalyst with HO shows the highest photocatalytic activity toward CTC. The kinetic constant is 5.4 times that in the system of MOF-1 and hydrogen peroxide, which usually acted as efficient electron acceptors to improve the photocatalytic performance of MOFs. More importantly, light absorption is extended from the ultraviolet to the visible region. Furthermore, 1/GO/FeO can be quickly recycled under an applied magnetic field and displays outstanding stability and reusability. According to the radical trapping experiments and electron paramagnetic resonance results, hydroxyl radicals, superoxide radicals, and holes all contribute to excellent photocatalytic activity. The possible catalytic mechanism of 1/GO/FeO is tentatively proposed. This work aims to explore the synergistic effect between metal-organic frameworks (MOFs) and GO, and provide a theoretical basis for MOF-based composites to remove antibiotic contaminants in the environment.
在此,我们报道了一种新型的Ce(BTB)(HO)(MOF-1,HBTB = 1,3,5-苯三苯甲酸)、氧化石墨烯(GO)和氧化铁(FeO)组成的1/GO/FeO光催化剂,用于光催化降解金霉素(CTC)。这种设计能够使电子从金属有机框架有效地转移到氧化石墨烯上,从而降低光生电子-空穴复合率。因此,优化后的含HO的1/GO/FeO光催化剂对金霉素表现出最高的光催化活性。动力学常数是MOF-1与过氧化氢体系中的5.4倍,过氧化氢通常作为有效的电子受体来提高金属有机框架的光催化性能。更重要的是,光吸收范围从紫外区域扩展到了可见区域。此外,1/GO/FeO在施加磁场的情况下能够快速回收,并表现出出色的稳定性和可重复使用性。根据自由基捕获实验和电子顺磁共振结果,羟基自由基、超氧自由基和空穴都对优异的光催化活性有贡献。初步提出了1/GO/FeO可能的催化机理。这项工作旨在探索金属有机框架(MOFs)与氧化石墨烯之间的协同效应,并为基于MOF的复合材料去除环境中的抗生素污染物提供理论依据。
Phys Chem Chem Phys. 2024-1-31
Environ Sci Pollut Res Int. 2021-1
Sci Rep. 2025-2-8