Suppr超能文献

用于理解宿主“普通菜豆”与引起菜豆炭疽病的病原体之间相互作用的综合生化方法。

Comprehensive biochemical approach for understanding the interaction between host "common bean" and pathogen "" causing bean anthracnose.

作者信息

Shafi Safoora, Khan Mohd Anwar, Wani Fehim Jeelani, Sheikh Farooq Ahmad, Ganai Shabir Ahmad, Mughal Najeeb M, Shikari Asif Bashir, Varshney Rajeev Kumar, Djalovic Ivica, Mir Reyazul Rouf

机构信息

Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201 India.

Division of Agricultural Economics & Statistics, SKUAST-Kashmir, Wadura, 193201 India.

出版信息

Physiol Mol Biol Plants. 2023 Dec;29(12):2005-2020. doi: 10.1007/s12298-023-01394-6. Epub 2023 Dec 2.

Abstract

Anthracnose (ANT) caused by is the most devastating seed-borne fungal disease of common bean. In response to fungal infections, it is hypothesized that pathogen-plant interactions typically cause hypersensitive reactions by producing reactive oxygen species, hydrogen peroxide and lipid peroxidation of cell membranes. esent study was conducted by inoculating susceptible bean genotype "SB174" and resistant bean genotype "E10" with pathogen "". Defense-related enzymes (ascorbate peroxidase, peroxidase, lipid peroxidase, and catalase) and C-based compounds (total phenols and flavonoids) were studied using the detached bean leaf method. Comparative defense response was studied in different plant tissues (pod, stem, and seed) in susceptible and resistant bean genotypes under uninoculated and pathogen-inoculated conditions. The host‒pathogen interaction was studied at mock inoculation, 2, 4 and 6 days after inoculation (dai). Comparing the pathogen-inoculated bean leaves to water-treated bean leaves, defense enzymes as well as total phenols and flavonoids exhibited differential expression. In a comparative study, the enzyme activity also displayed differential biochemical responses in pods, stems and seeds in both contrasting genotypes. For example, 5.1-fold (pod), 1.5-fold (stem) and 1.06-fold (seed) increases in ascorbate peroxidase activity were observed in the susceptible genotype at 6 dai compared to mock inoculation. Similarly, catalase activity in pods was upregulated (1.47-fold) in the resistant genotype and downregulated (1.30-fold) in the susceptible genotype at 6 dai. The study revealed that defense-related antioxidative enzymes, phenols and flavonoids are fine-tuned to detoxify important reactive oxygen species (ROS) molecules, induce systemic resistance and are successfully controlled in common bean plants against pathogen invasion.

摘要

炭疽病(ANT)是由[病原体名称未给出]引起的菜豆最具毁灭性的种传真菌病害。针对真菌感染,据推测病原体与植物的相互作用通常通过产生活性氧、过氧化氢以及细胞膜的脂质过氧化作用引发超敏反应。本研究通过用病原体[病原体名称未给出]接种易感菜豆基因型“SB174”和抗性菜豆基因型“E10”来进行。使用离体菜豆叶片法研究了防御相关酶(抗坏血酸过氧化物酶、过氧化物酶、脂质过氧化物酶和过氧化氢酶)和碳基化合物(总酚和类黄酮)。在未接种和接种病原体条件下,研究了易感和抗性菜豆基因型不同植物组织(豆荚、茎和种子)中的比较防御反应。在模拟接种、接种后2天、4天和6天(dai)研究宿主 - 病原体相互作用。将接种病原体的菜豆叶片与水处理的菜豆叶片进行比较,防御酶以及总酚和类黄酮表现出差异表达。在一项比较研究中,两种对比基因型的豆荚、茎和种子中的酶活性也表现出不同的生化反应。例如,在接种后6天,易感基因型中抗坏血酸过氧化物酶活性相对于模拟接种分别增加了5.1倍(豆荚)、1.5倍(茎)和1.06倍(种子)。同样,在接种后6天,抗性基因型中豆荚中的过氧化氢酶活性上调(1.47倍),易感基因型中则下调(1.30倍)。该研究表明,防御相关的抗氧化酶、酚类和类黄酮经过精细调节以解毒重要的活性氧(ROS)分子、诱导系统抗性,并在菜豆植株中成功地抵御病原体入侵。

相似文献

8
Race Structure and Molecular Diversity of of Common Bean in Zambia.赞比亚普通菜豆的种族结构和分子多样性。
Plant Dis. 2024 Apr;108(4):857-865. doi: 10.1094/PDIS-01-23-0143-RE. Epub 2024 Apr 19.

本文引用的文献

6
Role of secondary metabolites in plant defense against pathogens.次生代谢物在植物抵御病原体中的作用。
Microb Pathog. 2018 Nov;124:198-202. doi: 10.1016/j.micpath.2018.08.034. Epub 2018 Aug 23.
10
Diverse functions and reactions of class III peroxidases.III类过氧化物酶的多种功能和反应。
New Phytol. 2016 Mar;209(4):1395-402. doi: 10.1111/nph.13738. Epub 2015 Nov 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验