Suppr超能文献

确定最佳回溯期以支持先前的抗生素耐药性临床决策。

Identifying the Optimal Look-back Period for Prior Antimicrobial Resistance Clinical Decision Support.

机构信息

Clinical Informatics Center, University of Texas Southwestern Medical Center, Dallas, Texas.

Division of Infectious Diseases & Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.

出版信息

AMIA Annu Symp Proc. 2024 Jan 11;2023:969-976. eCollection 2023.

Abstract

BACKGROUND

Lack of consensus on the appropriate look-back period for multi-drug resistance (MDR) complicates antimicrobial clinical decision support. We compared the predictive performance of different MDR look-back periods for five common MDR mechanisms (MRSA, VRE, ESBL, AmpC, CRE).

METHODS

We mapped microbiological cultures to MDR mechanisms and labeled them at different look-back periods. We compared predictive performance for each look-back period-MDR combination using precision, recall, F1 scores, and odds ratios.

RESULTS

Longer look-back periods resulted in lower odds ratios, lower precisions, higher recalls, and lower delta changes in precision and recall compared to shorter periods. We observed higher precision with more information available to clinicians.

CONCLUSION

A previously positive MDR culture may have significant enough precision depending on the mechanism of resistance and varying information available. One year is a clinically relevant and statistically sound look-back period for empiric antimicrobial decision-making at varying points of care for the studied population.

摘要

背景

对于多药耐药性 (MDR) 的适当回溯期缺乏共识,这使得抗菌药物临床决策支持变得复杂。我们比较了不同 MDR 回溯期对于五种常见 MDR 机制(MRSA、VRE、ESBL、AmpC、CRE)的预测性能。

方法

我们将微生物培养物映射到 MDR 机制,并在不同的回溯期进行标记。我们使用精度、召回率、F1 分数和优势比比较了每个回溯期-MDR 组合的预测性能。

结果

与较短的回溯期相比,较长的回溯期导致较低的优势比、较低的精度、较高的召回率以及较低的精度和召回率的变化。我们观察到,随着向临床医生提供更多信息,精度会提高。

结论

根据耐药机制和不同的可用信息,之前阳性的 MDR 培养物可能具有足够的精度。对于研究人群在不同护理点的经验性抗菌药物决策,一年是一个具有临床意义和统计学意义的回溯期。

相似文献

5
Epidemiology of multidrug-resistant bacteria in patients with long hospital stays.
Infect Control Hosp Epidemiol. 2007 Nov;28(11):1255-60. doi: 10.1086/522678. Epub 2007 Sep 28.
6
[The Change in Antimicrobial Resistance During the COVID-19 Pandemic in Türkiye].
Mikrobiyol Bul. 2023 Oct;57(4):507-534. doi: 10.5578/mb.20239943.
7
9
Impact of coronavirus disease 2019 (COVID-19) on antimicrobial resistance among major pathogens causing healthcare-associated infection.
J Formos Med Assoc. 2024 Jan;123(1):123-132. doi: 10.1016/j.jfma.2023.06.026. Epub 2023 Jul 12.

引用本文的文献

1
Socioeconomic Disparities and the Prevalence of Antimicrobial Resistance.
Clin Infect Dis. 2024 Dec 17;79(6):1346-1353. doi: 10.1093/cid/ciae313.
2
Navigating the future: machine learning's role in revolutionizing antimicrobial stewardship and infection prevention and control.
Curr Opin Infect Dis. 2024 Aug 1;37(4):290-295. doi: 10.1097/QCO.0000000000001028. Epub 2024 May 31.

本文引用的文献

1
2
Characterization of predictors of ESBL-producing enterobacteriaceae in urine cultures of emergency department patients.
J Am Coll Emerg Physicians Open. 2021 Jan 14;2(1):e12345. doi: 10.1002/emp2.12345. eCollection 2021 Feb.
3
Personalized Antibiograms: Machine Learning for Precision Selection of Empiric Antibiotics.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:108-115. eCollection 2020.
7
Clinical Risk Score for Prediction of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Bloodstream Isolates.
Infect Control Hosp Epidemiol. 2017 Mar;38(3):266-272. doi: 10.1017/ice.2016.292. Epub 2016 Dec 19.
9
Access to effective antimicrobials: a worldwide challenge.
Lancet. 2016 Jan 9;387(10014):168-75. doi: 10.1016/S0140-6736(15)00474-2. Epub 2015 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验