Suppr超能文献

相似文献

1
2
Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit.
Clin Microbiol Infect. 2011 Aug;17(8):1201-8. doi: 10.1111/j.1469-0691.2010.03420.x. Epub 2010 Dec 13.
3
Infection with multidrug-resistant gram-negative bacteria in a pediatric oncology intensive care unit: risk factors and outcomes.
J Pediatr (Rio J). 2015 Sep-Oct;91(5):435-41. doi: 10.1016/j.jped.2014.11.009. Epub 2015 Jun 6.
4
Predicting resistant etiology in hospitalized patients with blood cultures positive for Gram-negative bacilli.
Eur J Intern Med. 2018 Jul;53:21-28. doi: 10.1016/j.ejim.2018.01.029. Epub 2018 Feb 13.
5
The rising influx of multidrug-resistant gram-negative bacilli into a tertiary care hospital.
Clin Infect Dis. 2005 Jun 15;40(12):1792-8. doi: 10.1086/430314. Epub 2005 May 6.
6
Risk factors and outcomes for multidrug-resistant Gram-negative bacteremia in the NICU.
Pediatrics. 2014 Feb;133(2):e322-9. doi: 10.1542/peds.2013-1248. Epub 2014 Jan 13.
10
Factors Associated with Gram-Negative Bacteremia and Mortality in Neutropenic Patients with Hematologic Malignancies in a High-Resistance Setting.
Infect Dis Clin Microbiol. 2022 Jun 13;4(2):87-98. doi: 10.36519/idcm.2022.141. eCollection 2022 Jun.

引用本文的文献

1
Clinical prediction models for febrile neutropenia and its outcomes: a systematic review.
Support Care Cancer. 2025 Jun 4;33(7):537. doi: 10.1007/s00520-025-09562-y.
2
Artificial intelligence in antimicrobial stewardship: a systematic review and meta-analysis of predictive performance and diagnostic accuracy.
Eur J Clin Microbiol Infect Dis. 2025 Mar;44(3):463-513. doi: 10.1007/s10096-024-05027-y. Epub 2025 Jan 6.
3
A machine-learning model for prediction of Acinetobacter baumannii hospital acquired infection.
PLoS One. 2024 Dec 5;19(12):e0311576. doi: 10.1371/journal.pone.0311576. eCollection 2024.
6
Retrospective validation study of a machine learning-based software for empirical and organism-targeted antibiotic therapy selection.
Antimicrob Agents Chemother. 2024 Oct 8;68(10):e0077724. doi: 10.1128/aac.00777-24. Epub 2024 Aug 28.
7
Unbiased identification of risk factors for invasive Escherichia coli disease using machine learning.
BMC Infect Dis. 2024 Aug 8;24(1):796. doi: 10.1186/s12879-024-09669-3.

本文引用的文献

1
Artificial intelligence and the future of global health.
Lancet. 2020 May 16;395(10236):1579-1586. doi: 10.1016/S0140-6736(20)30226-9.
2
Artificial intelligence to support clinical decision-making processes.
EBioMedicine. 2019 Aug;46:27-29. doi: 10.1016/j.ebiom.2019.07.019. Epub 2019 Jul 11.
3
Predictors of multidrug-resistant Pseudomonas aeruginosa in neutropenic patients with bloodstream infection.
Clin Microbiol Infect. 2020 Mar;26(3):345-350. doi: 10.1016/j.cmi.2019.07.002. Epub 2019 Jul 8.
4
The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.
Nat Med. 2018 Nov;24(11):1716-1720. doi: 10.1038/s41591-018-0213-5. Epub 2018 Oct 22.
5
Risk factors for mortality in patients with acute leukemia and bloodstream infections in the era of multiresistance.
PLoS One. 2018 Jun 28;13(6):e0199531. doi: 10.1371/journal.pone.0199531. eCollection 2018.
6
Big Data and Predictive Analytics: Recalibrating Expectations.
JAMA. 2018 Jul 3;320(1):27-28. doi: 10.1001/jama.2018.5602.
8
Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare Epidemiology.
Clin Infect Dis. 2018 Jan 6;66(1):149-153. doi: 10.1093/cid/cix731.
9
Pseudomonas aeruginosa bacteraemia in patients with hematologic malignancies: risk factors, treatment and outcome.
Diagn Microbiol Infect Dis. 2017 Aug;88(4):335-341. doi: 10.1016/j.diagmicrobio.2017.05.003. Epub 2017 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验