Garcia-Vidal Carolina, Puerta-Alcalde Pedro, Cardozo Celia, Orellana Miquel A, Besanson Gaston, Lagunas Jaime, Marco Francesc, Del Rio Ana, Martínez Jose A, Chumbita Mariana, Garcia-Pouton Nicole, Mensa Josep, Rovira Montserrat, Esteve Jordi, Soriano Alex
Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain.
University of Barcelona, Barcelona, Spain.
Infect Dis Ther. 2021 Jun;10(2):971-983. doi: 10.1007/s40121-021-00438-2. Epub 2021 Apr 16.
We aimed to assess risk factors for multidrug-resistant Gram-negative bacilli (MDR-GNB) from a large amount of data retrieved from electronic health records (EHRs) and determine whether machine learning (ML) may be useful in assessing the risk of MDR-GNB infection at febrile neutropenia (FN) onset.
Retrospective study of almost 7 million pieces of structured data from all consecutive episodes of FN in hematological patients in a tertiary hospital in Barcelona (January 2008-December 2017). Conventional multivariate analysis and ML algorithms (random forest, gradient boosting machine, XGBoost, and GLM) were done.
A total of 3235 episodes of FN in 349 patients were documented; MDR-GNB caused 180 (5.6%) infections in 132 patients. The most frequent MDR-GNBs were MDR-Pseudomonas aeruginosa (53%) and extended-spectrum beta-lactamase-producing Enterobacterales (46%). According to conventional logistic regression analysis, independent factors associated with MDR-GNB infection were age older than 45 years (OR 2.07; 95% CI 1.31-3.24), prior antibiotics (2.62; 1.39-4.92), first-ever FN in this hospitalization (2.94; 1.33-6.52), prior hospitalizations for FN (1.72; 1.02-2.89); at least 15 prior hospital visits (2.65; 1.31-5.33), high-risk hematological diseases (3.62; 1.12-11.67), and hospitalization in a room formerly occupied by patients with MDR-GNB isolation (1.69; 1.20-2.38). ML algorithms achieved the following AUC and F1 score for MDR-GNB prediction: random forest, 0.79-0.9711; GMB, 0.79-0.9705; XGBoost, 0.79-0.9670; and GLM, 0.78-0.9716.
Data generated in EHRs proved useful in assessing risk factors for MDR-GNB infections in patients with FN. The great number of analyzed variables allowed us to identify new factors related to MDR infection, as well as to train ML algorithms for infection predictions. This information may be used by clinicians to make better clinical decisions.
我们旨在从电子健康记录(EHR)中检索到的大量数据中评估耐多药革兰氏阴性杆菌(MDR - GNB)的风险因素,并确定机器学习(ML)是否有助于在发热性中性粒细胞减少症(FN)发作时评估MDR - GNB感染的风险。
对巴塞罗那一家三级医院血液科患者所有连续的FN发作事件中的近700万条结构化数据进行回顾性研究(2008年1月至2017年12月)。进行了传统的多变量分析和ML算法(随机森林、梯度提升机、XGBoost和广义线性模型)。
共记录了349例患者的3235次FN发作事件;MDR - GNB在132例患者中引起了180次(5.6%)感染。最常见的MDR - GNB是耐多药铜绿假单胞菌(53%)和产超广谱β - 内酰胺酶的肠杆菌科细菌(46%)。根据传统逻辑回归分析,与MDR - GNB感染相关的独立因素包括年龄大于45岁(比值比2.07;95%置信区间1.31 - 3.24)、既往使用过抗生素(2.62;1.39 - 4.92)、本次住院首次发生FN(2.94;1.33 - 6.52)、既往因FN住院(1.72;1.02 - 2.89);既往至少15次住院就诊(2.65;1.31 - 5.33)、高危血液疾病(3.62;1.12 - 11.67)以及在曾有MDR - GNB隔离患者居住过的病房住院(1.69;1.20 - 2.38)。ML算法对MDR - GNB预测的曲线下面积(AUC)和F1分数如下:随机森林,0.79 - 0.9711;梯度提升机,0.79 - 0.9705;XGBoost,0.79 - 0.9670;广义线性模型,0.78 - 0.9716。
EHR中生成的数据被证明有助于评估FN患者中MDR - GNB感染的风险因素。大量分析变量使我们能够识别与MDR感染相关的新因素,并训练ML算法进行感染预测。这些信息可供临床医生用于做出更好的临床决策。