Chen Hua, Yan Ling, Wang Xu-Li, Xie Jing-Jing, Lv Jin, Wu Hai-Shun
Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China.
ACS Omega. 2023 Dec 18;9(1):1389-1397. doi: 10.1021/acsomega.3c07773. eCollection 2024 Jan 9.
In the past few years, two-dimensional (2D) high-temperature ferromagnetic semiconductor (FMS) materials with novelty and excellent properties have attracted much attention due to their potential in spintronics applications. In this work, using first-principles calculations, we predict that the H-MnN monolayer with the H-MoS-type structure is a stable intrinsic FMS with an indirect band gap of 0.79 eV and a high Curie temperature () of 380 K. The monolayer also has a considerable in-plane magnetic anisotropy energy (IMAE) of 1005.70 μeV/atom, including a magnetic shape anisotropy energy induced by the dipole-dipole interaction (shape-MAE) of 168.37 μeV/atom and a magnetic crystalline anisotropy energy resulting from spin-orbit coupling (SOC-MAE) of 837.33 μeV/atom. Further, based on the second-order perturbation theory, its in-plane SOC-MAE of 837.33 μeV/atom is revealed to mainly derive from the couplings of Mn-d,d and Mn-d,d orbitals through in the same spin channel. In addition, the biaxial strain and carrier doping can effectively tune the monolayer's magnetic and electronic properties. Such as, under the hole and few electrons doping, the transition from semiconductor to half-metal can be realized, and its can go up to 520 and 620 K under 5% tensile strain and 0.3 hole doping, respectively. Therefore, our research will provide a new, promising 2D FMS for spintronics devices.
在过去几年中,具有新颖性和优异性能的二维(2D)高温铁磁半导体(FMS)材料因其在自旋电子学应用中的潜力而备受关注。在这项工作中,我们使用第一性原理计算预测,具有H-MoS型结构的H-MnN单层是一种稳定的本征FMS,其间接带隙为0.79 eV,居里温度()高达380 K。该单层还具有相当大的面内磁各向异性能(IMAE),为1005.70 μeV/原子,其中包括由偶极-偶极相互作用引起的磁形状各向异性能(形状-MAE),为168.37 μeV/原子,以及由自旋轨道耦合(SOC-MAE)产生的磁晶各向异性能,为837.33 μeV/原子。此外,基于二阶微扰理论,其837.33 μeV/原子的面内SOC-MAE主要源于相同自旋通道中Mn-d,d和Mn-d,d轨道通过的耦合。此外,双轴应变和载流子掺杂可以有效地调节单层的磁性能和电子性能。例如,在空穴和少量电子掺杂下,可以实现从半导体到半金属的转变,在5%拉伸应变和0.3空穴掺杂下,其居里温度分别可高达520 K和620 K。因此,我们的研究将为自旋电子器件提供一种新的、有前景的二维FMS。