Suppr超能文献

地形深度揭示了不同于粘着斑限制的接触导向机制。

Topographical depth reveals contact guidance mechanism distinct from focal adhesion confinement.

机构信息

U.S. Naval Research Laboratory, Washington, DC, USA.

School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA.

出版信息

Cytoskeleton (Hoboken). 2024 Apr-May;81(4-5):238-248. doi: 10.1002/cm.21810. Epub 2024 Jan 16.

Abstract

Cellular response to the topography of their environment, known as contact guidance, is a crucial aspect to many biological processes yet remains poorly understood. A prevailing model to describe cellular contact guidance involves the lateral confinement of focal adhesions (FA) by topography as an underlying mechanism governing how cells can respond to topographical cues. However, it is not clear how this model is consistent with the well-documented depth-dependent contact guidance responses in the literature. To investigate this model, we fabricated a set of contact guidance chips with lateral dimensions capable of confining focal adhesions and relaxing that confinement at various depths. We find at the shallowest depth of 330 nm, the model of focal adhesion confinement is consistent with our observations. However, the cellular response at depths of 725 and 1000 nm is inadequately explained by this model. Instead, we observe a distinct reorganization of F-actin at greater depths in which topographically induced cell membrane deformation alters the structure of the cytoskeleton. These results are consistent with an alternative curvature-hypothesis to explain cellular response to topographical cues. Together, these results indicate a confluence of two molecular mechanisms operating at increased induced membrane curvature that govern how cells sense and respond to topography.

摘要

细胞对外界环境拓扑结构的反应,即接触引导,是许多生物学过程的关键方面,但仍未被充分理解。一个流行的模型来描述细胞接触引导涉及到细胞的侧向限制焦点黏附(FA)的拓扑结构,这是一个潜在的机制来控制细胞如何对拓扑线索做出反应。然而,目前尚不清楚这个模型如何与文献中记录的深度依赖的接触引导反应相一致。为了研究这个模型,我们制造了一组接触引导芯片,其具有侧向尺寸,可以限制焦点黏附,并在不同的深度上放松这种限制。我们发现,在最浅的 330nm 深度,焦点黏附限制模型与我们的观察结果一致。然而,在 725nm 和 1000nm 的深度,该模型无法充分解释细胞的反应。相反,我们观察到在更大的深度上 F-肌动蛋白的明显重组,其中拓扑诱导的细胞膜变形改变了细胞骨架的结构。这些结果与曲率假说一致,该假说解释了细胞对拓扑线索的反应。总之,这些结果表明,两种分子机制在增加的诱导膜曲率下共同作用,从而控制细胞如何感知和响应拓扑结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验