Geissler Matthias, Brassard Daniel, Adam Nadine, Nasheri Neda, Pilar Ana Victoria C, Tapp Kyle, Clime Liviu, Miville-Godin Caroline, Mounier Maxence, Nassif Christina, Lukic Ljuboje, Malic Lidija, Corneau Nathalie, Veres Teodor
Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
Lab Chip. 2024 Feb 13;24(4):668-679. doi: 10.1039/d3lc00904a.
We describe a microfluidic system for conducting thermal lysis, polymerase chain reaction (PCR) amplification, hybridization, and colorimetric detection of foodborne viral organisms in a sample-to-answer format. The on-chip protocol entails 24 steps which are conducted by a centrifugal platform that allows for actuating liquids pneumatically during rotation and so facilitates automation of the workflow. The microfluidic cartridge is fabricated from transparent thermoplastic polymers and accommodates assay components along with an embedded micropillar array for detection and read-out. A panel of oligonucleotide primers and probes has been developed to perform PCR and hybridization assays that allows for identification of five different viruses, including pathogens such as norovirus and hepatitis A virus (HAV) in a multiplexed format using digoxigenin-labelled amplicons and immunoenzymatic conversion of a chromogenic substrate. Using endpoint detection, we demonstrate that the system can accurately and repetitively ( = 3) discriminate positive and negative signals for HAV at 350 genome copies per μL. As part of the characterization and optimization process, we show that the implementation of multiple (, seven) micropillar arrays in a narrow fluidic pathway can lead to variation (up to 50% or more) in the distribution of colorimetric signal deriving from the assay. Numerical modeling of flow behaviour was used to substantiate these findings. The technology-by virtue of automation-can provide a pathway toward rapid detection of viral pathogens, shortening response time in food safety surveillance, compliance, and enforcement as well as outbreak investigations.
我们描述了一种微流控系统,该系统以样品到答案的形式对食源性病原体进行热裂解、聚合酶链反应(PCR)扩增、杂交和比色检测。芯片上的操作流程包括24个步骤,由一个离心平台执行,该平台允许在旋转过程中通过气动方式驱动液体,从而便于工作流程的自动化。微流控芯片由透明热塑性聚合物制成,可容纳检测组件以及用于检测和读出的嵌入式微柱阵列。已开发出一组寡核苷酸引物和探针,用于进行PCR和杂交检测,可使用地高辛标记的扩增子和显色底物的免疫酶转化,以多重形式鉴定五种不同的病毒,包括诺如病毒和甲型肝炎病毒(HAV)等病原体。使用终点检测,我们证明该系统能够准确且重复地(n = 3)区分每微升350个基因组拷贝的HAV的阳性和阴性信号。作为表征和优化过程的一部分,我们表明在狭窄的流体通道中实施多个(即七个)微柱阵列会导致检测产生的比色信号分布出现变化(高达50%或更多)。流动行为的数值模拟被用来证实这些发现。这项技术凭借自动化,可为快速检测病毒病原体提供一条途径,缩短食品安全监测、合规和执法以及疫情调查中的响应时间。