Suppr超能文献

一种用于床边脓毒症预测的机器学习与离心微流控平台。

A machine learning and centrifugal microfluidics platform for bedside prediction of sepsis.

作者信息

Malic Lidija, Zhang Peter G Y, Plant Pamela J, Clime Liviu, Nassif Christina, Da Fonte Dillon, Haney Evan E, Moon Byeong-Ui, Sit Victor Min-Sung, Brassard Daniel, Mounier Maxence, Churcher Eryn, Tsoporis James T, Falsafi Reza, Bains Manjeet, Baker Andrew, Trahtemberg Uriel, Lukic Ljuboje, Marshall John C, Geissler Matthias, Hancock Robert E W, Veres Teodor, Dos Santos Claudia C

机构信息

Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.

Center for Research and Applications in Fluidic Technologies (CRAFT), University of Toronto, 5 King's College Rd, Toronto, ON, M5S 1A8, Canada.

出版信息

Nat Commun. 2025 May 27;16(1):4442. doi: 10.1038/s41467-025-59227-x.

Abstract

Sepsis is a life-threatening organ dysfunction due to a dysfunctional response to infection. Delays in diagnosis have substantial impact on survival. Herein, blood samples from 586 in-house patients with suspected sepsis are used in conjunction with machine learning and cross-validation to define a six-gene expression signature of immune cell reprogramming, termed Sepset, to predict clinical deterioration within the first 24 h (h) of clinical presentation. Prediction accuracy (~90% in early intensive care unit (ICU) and 70% in emergency room patients) is validated in 3178 patients from existing independent cohorts. A RT-PCR-based Sepset detection test shows a 94% sensitivity in 248 patients to predict worsening of the sequential organ failure assessment scores within the first 24 h. A stand-alone centrifugal microfluidic instrument that automates whole-blood Sepset classifier detection is tested, showing a sensitivity of 92%, and specificity of 89% in identifying the risk of clinical deterioration in patients with suspected sepsis.

摘要

脓毒症是一种因对感染的功能失调反应而危及生命的器官功能障碍。诊断延迟对生存率有重大影响。在此,来自586名疑似脓毒症住院患者的血样与机器学习和交叉验证相结合,以定义一种免疫细胞重编程的六基因表达特征,称为Sepset,用于预测临床表现后最初24小时内的临床恶化情况。在来自现有独立队列的3178名患者中验证了预测准确性(早期重症监护病房(ICU)患者中约为90%,急诊室患者中约为70%)。基于逆转录聚合酶链反应(RT-PCR)的Sepset检测试验在248名患者中显示出94%的敏感性,可预测最初24小时内序贯器官衰竭评估评分的恶化情况。测试了一种自动化全血Sepset分类器检测的独立离心微流控仪器,在识别疑似脓毒症患者临床恶化风险方面显示出92%的敏感性和89%的特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验