Suppr超能文献

利用随机森林算法模拟富硒玉米在缺硒农田中的种植可行性。

Modeling the feasibility of Se-rich corn cultivation in Se-deficient agricultural fields using random forest algorithm.

机构信息

Changsha General Survey of Natural Resources Center, Changsha, China.

College of Resources and Environment, Yangtze University, Wuhan, China.

出版信息

Environ Geochem Health. 2024 Jan 16;46(2):46. doi: 10.1007/s10653-023-01831-1.

Abstract

Selenium constitutes an essential trace element for the human body. Moderate Se intake plays a pivotal role in preserving overall health. The absorption of Se by plants is primarily influenced by the available Se levels in soils, rather than by the soil total Se content, offering potential for exploring Se-rich crops in Se-deficient regions. In this study, we explore the factors influencing the Se bioaccumulation coefficient in corn based on a land quality geochemical survey at a 1:50,000 scale and establish predictive models for corn seed Se content using random forest and multiple linear regression approaches. The results indicate that the surface soil in the study area is deficient in Se (0.18-1.21 mg/kg), but 54% of the corn grain samples met the standards for Se-rich products (0.02-0.30 mg/kg). The factors influencing the Se biological enrichment coefficient in corn seeds are soil pH and CaO and MgO content, with impact levels of 0.54, 0.42, and 0.35, respectively. Compared to multiple linear regression models, the RF model provides more accurate and reliable predictions of corn Se content. The random forest model indicates that approximately 41% of the farmland within the study area is conducive to the cultivation of naturally Se-rich corn, which is a 26% increase in the planting area compared to recommendations based solely on soil Se content. In this research, we introduce an innovative methodological framework for organically cultivating naturally Se-rich corn within regions affected by Se deficiency.

摘要

硒是人体必需的微量元素。适量摄入硒对维护整体健康起着关键作用。植物对硒的吸收主要受土壤中可利用硒水平的影响,而不是土壤总硒含量的影响,这为在缺硒地区探索富硒作物提供了可能。在这项研究中,我们基于 1:50000 比例尺的土地质量地球化学调查,探讨了影响玉米硒生物富集系数的因素,并利用随机森林和多元线性回归方法建立了玉米种子硒含量的预测模型。结果表明,研究区表层土壤硒含量较低(0.18-1.21mg/kg),但有 54%的玉米籽粒样品达到富硒产品标准(0.02-0.30mg/kg)。影响玉米种子硒生物富集系数的因素是土壤 pH 值和 CaO、MgO 含量,其影响水平分别为 0.54、0.42 和 0.35。与多元线性回归模型相比,RF 模型对玉米硒含量的预测更为准确可靠。随机森林模型表明,研究区约 41%的农田有利于种植天然富硒玉米,与仅基于土壤硒含量的建议相比,种植面积增加了 26%。本研究提出了一种在缺硒地区有机种植天然富硒玉米的创新方法框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验