College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China.
Environ Geochem Health. 2024 Sep 9;46(10):418. doi: 10.1007/s10653-024-02206-w.
Fluoride (F) is a trace element that is essential to the human body and occurs naturally in the environment. However, a deficiency or excess of F in the environment can potentially lead to human health issues. The pseudototal amount of F in soil often does not correlate directly with the F content in plants. Instead, the F content within plants tends to have a greater correlation with the bioavailable F in soils. In large-scale soil surveys, only the pseudototal elemental content of soils is typically measured, which may not be highly reliable for developing agricultural zoning plans. There are significant variations in the ability of different plants to accumulate F from soil. Additionally, due to variations in soil elemental absorption mechanisms among different plant species, when multiple crops are grown in an area, it is typically necessary to study the elemental absorption mechanisms of each crop. To address these issues, in this study, we examined the factors influencing F bioaccumulation coefficients in different crops based on 1:50,000 soil geochemical survey data. Using the random forest algorithm, four indicators-bioavailable P, bioavailable Zn, leachable Pb, and Sr-were selected from among 29 parameters to predict the F content within crops to replace bioavailable F in the soil. Compared with the multivariate linear regression (MLR) model, the random forest (RF) model provided more accurate and reliable predictions of the fluoride content in crops, with the RF model's prediction accuracy improving by approximately 95.23%. Additionally, while the partial least squares regression (PLSR) model also offered improved accuracy over MLR, the RF model still outperformed PLSR in terms of prediction accuracy and robustness. Additionally, it maximized the utilization of existing geochemical survey data, enabling cross-species studies for the first time and avoiding redundant evaluations of different types of agricultural products in the same region. In this investigation, we selected the Xining-Ledu region of Qinghai Province, China, as the study area and employed a random forest model to predict the crop F content in soils, providing a new methodological framework for crop production that effectively enhances agricultural quality and efficiency.
氟(F)是一种对人体至关重要的微量元素,在环境中自然存在。然而,环境中 F 的缺乏或过量都可能导致人类健康问题。土壤中 F 的总量通常与植物中的 F 含量没有直接关系。相反,植物中的 F 含量往往与土壤中有效 F 的含量有更大的相关性。在大规模土壤调查中,通常只测量土壤中元素的总量,这对于制定农业分区计划可能不太可靠。不同植物从土壤中积累 F 的能力有很大差异。此外,由于不同植物物种的土壤元素吸收机制不同,当在一个地区种植多种作物时,通常需要研究每种作物的元素吸收机制。为了解决这些问题,在这项研究中,我们根据 1:50000 土壤地球化学调查数据,研究了影响不同作物 F 生物积累系数的因素。使用随机森林算法,从 29 个参数中选择了四个指标-有效磷、有效锌、可提取铅和 Sr-来预测作物中的 F 含量,以替代土壤中的有效 F。与多元线性回归(MLR)模型相比,随机森林(RF)模型提供了更准确和可靠的作物 F 含量预测,RF 模型的预测精度提高了约 95.23%。此外,尽管偏最小二乘回归(PLSR)模型也比 MLR 提供了更高的准确性,但 RF 模型在预测精度和稳健性方面仍然优于 PLSR。此外,它最大限度地利用了现有的地球化学调查数据,首次实现了跨物种研究,并避免了对同一地区不同类型农产品的冗余评估。在这项研究中,我们选择了中国青海省西宁-乐都地区作为研究区域,并采用随机森林模型预测土壤中作物的 F 含量,为提高农业质量和效率提供了新的方法框架。