The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
ACS Nano. 2024 Jan 30;18(4):3199-3213. doi: 10.1021/acsnano.3c09695. Epub 2024 Jan 16.
Intracellular bacterial infections bring a considerable risk to human life and health due to their capability to elude immune defenses and exhibit significant drug resistance. As a result, confronting and managing these infections present substantial challenges. In this study, we developed a multifunctional living phage nanoconjugate by integrating aggregation-induced emission luminogen (AIEgen) photosensitizers and nucleic acids onto a bacteriophage framework (forming MS2-DNA-AIEgen bioconjugates). These nanoconjugates can rapidly penetrate mammalian cells and specifically identify intracellular bacteria while concurrently producing a detectable fluorescent signal. By harnessing the photodynamic property of AIEgen photosensitizer and the bacteriophage's inherent targeting and lysis capability, the intracellular bacteria can be effectively eliminated and the activity of the infected cells can be restored. Moreover, our engineered phage nanoconjugates were able to expedite the healing process in bacterially infected wounds observed in diabetic mice models while simultaneously enhancing immune activity within infected cells and , without displaying noticeable toxicity. We envision that these multifunctional phage nanoconjugates, which utilize AIEgen photosensitizers and spherical nucleic acids, may present a groundbreaking strategy for combating intracellular bacteria and offer powerful avenues for theranostic applications in intracellular bacterial infection-associated diseases.
由于能够逃避免疫防御并表现出显著的耐药性,细胞内细菌感染给人类的生命和健康带来了相当大的风险。因此,应对和管理这些感染带来了巨大的挑战。在这项研究中,我们通过将聚集诱导发光(AIEgen)光敏剂和核酸整合到噬菌体框架上(形成 MS2-DNA-AIEgen 生物缀合物),开发了一种多功能的活噬菌体纳米复合物。这些纳米复合物可以快速穿透哺乳动物细胞,并特异性识别细胞内细菌,同时产生可检测的荧光信号。通过利用 AIEgen 光敏剂的光动力特性和噬菌体固有的靶向和裂解能力,可以有效消除细胞内细菌,并恢复受感染细胞的活性。此外,我们设计的噬菌体纳米复合物能够加速糖尿病小鼠模型中细菌感染伤口的愈合过程,同时增强感染细胞内的免疫活性,而没有明显的毒性。我们设想,这些利用 AIEgen 光敏剂和球形核酸的多功能噬菌体纳米复合物可能为对抗细胞内细菌提供一种开创性的策略,并为与细胞内细菌感染相关疾病的治疗应用提供强大的途径。