Suppr超能文献

sTBI-GAN:一种用于创伤性脑分割数据合成的对抗学习方法。

sTBI-GAN: An adversarial learning approach for data synthesis on traumatic brain segmentation.

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China.

出版信息

Comput Med Imaging Graph. 2024 Mar;112:102325. doi: 10.1016/j.compmedimag.2024.102325. Epub 2024 Jan 6.

Abstract

Automatic brain segmentation of magnetic resonance images (MRIs) from severe traumatic brain injury (sTBI) patients is critical for brain abnormality assessments and brain network analysis. Construction of sTBI brain segmentation model requires manually annotated MR scans of sTBI patients, which becomes a challenging problem as it is quite impractical to implement sufficient annotations for sTBI images with large deformations and lesion erosion. Data augmentation techniques can be applied to alleviate the issue of limited training samples. However, conventional data augmentation strategies such as spatial and intensity transformation are unable to synthesize the deformation and lesions in traumatic brains, which limits the performance of the subsequent segmentation task. To address these issues, we propose a novel medical image inpainting model named sTBI-GAN to synthesize labeled sTBI MR scans by adversarial inpainting. The main strength of our sTBI-GAN method is that it can generate sTBI images and corresponding labels simultaneously, which has not been achieved in previous inpainting methods for medical images. We first generate the inpainted image under the guidance of edge information following a coarse-to-fine manner, and then the synthesized MR image is used as the prior for label inpainting. Furthermore, we introduce a registration-based template augmentation pipeline to increase the diversity of the synthesized image pairs and enhance the capacity of data augmentation. Experimental results show that the proposed sTBI-GAN method can synthesize high-quality labeled sTBI images, which greatly improves the 2D and 3D traumatic brain segmentation performance compared with the alternatives. Code is available at .

摘要

自动分割磁共振成像(MRI)中的严重创伤性脑损伤(sTBI)患者的大脑对于评估大脑异常和大脑网络分析至关重要。构建 sTBI 大脑分割模型需要手动注释 sTBI 患者的 MRI 扫描,但是由于对具有大变形和损伤侵蚀的 sTBI 图像进行充分注释非常不切实际,因此这成为了一个具有挑战性的问题。可以应用数据增强技术来缓解训练样本有限的问题。然而,传统的数据增强策略,如空间和强度变换,无法合成创伤性大脑中的变形和损伤,这限制了后续分割任务的性能。为了解决这些问题,我们提出了一种名为 sTBI-GAN 的新型医学图像修复模型,通过对抗性修复来合成带标签的 sTBI MRI 扫描。我们的 sTBI-GAN 方法的主要优势在于它可以同时生成 sTBI 图像和相应的标签,这是以前的医学图像修复方法无法实现的。我们首先按照从粗到细的方式在边缘信息的指导下生成修复后的图像,然后将合成的 MRI 图像用作标签修复的先验。此外,我们引入了基于配准的模板增强管道,以增加合成图像对的多样性并增强数据增强的能力。实验结果表明,所提出的 sTBI-GAN 方法可以合成高质量的带标签 sTBI 图像,与替代方法相比,大大提高了 2D 和 3D 创伤性大脑分割性能。代码可在 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验