Suppr超能文献

使用生成对抗网络生成 3D TOF-MRA 容积和分割标签。

Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks.

机构信息

CLAIM - Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Germany.

CLAIM - Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Germany; Department of Computer Engineering and Microelectronics, Computer Vision & Remote Sensing, Technical University Berlin, Berlin, Germany.

出版信息

Med Image Anal. 2022 May;78:102396. doi: 10.1016/j.media.2022.102396. Epub 2022 Feb 24.

Abstract

Deep learning requires large labeled datasets that are difficult to gather in medical imaging due to data privacy issues and time-consuming manual labeling. Generative Adversarial Networks (GANs) can alleviate these challenges enabling synthesis of shareable data. While 2D GANs have been used to generate 2D images with their corresponding labels, they cannot capture the volumetric information of 3D medical imaging. 3D GANs are more suitable for this and have been used to generate 3D volumes but not their corresponding labels. One reason might be that synthesizing 3D volumes is challenging owing to computational limitations. In this work, we present 3D GANs for the generation of 3D medical image volumes with corresponding labels applying mixed precision to alleviate computational constraints. We generated 3D Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) patches with their corresponding brain blood vessel segmentation labels. We used four variants of 3D Wasserstein GAN (WGAN) with: 1) gradient penalty (GP), 2) GP with spectral normalization (SN), 3) SN with mixed precision (SN-MP), and 4) SN-MP with double filters per layer (c-SN-MP). The generated patches were quantitatively evaluated using the Fréchet Inception Distance (FID) and Precision and Recall of Distributions (PRD). Further, 3D U-Nets were trained with patch-label pairs from different WGAN models and their performance was compared to the performance of a benchmark U-Net trained on real data. The segmentation performance of all U-Net models was assessed using Dice Similarity Coefficient (DSC) and balanced Average Hausdorff Distance (bAVD) for a) all vessels, and b) intracranial vessels only. Our results show that patches generated with WGAN models using mixed precision (SN-MP and c-SN-MP) yielded the lowest FID scores and the best PRD curves. Among the 3D U-Nets trained with synthetic patch-label pairs, c-SN-MP pairs achieved the highest DSC (0.841) and lowest bAVD (0.508) compared to the benchmark U-Net trained on real data (DSC 0.901; bAVD 0.294) for intracranial vessels. In conclusion, our solution generates realistic 3D TOF-MRA patches and labels for brain vessel segmentation. We demonstrate the benefit of using mixed precision for computational efficiency resulting in the best-performing GAN-architecture. Our work paves the way towards sharing of labeled 3D medical data which would increase generalizability of deep learning models for clinical use.

摘要

深度学习需要大量的标记数据集,但由于数据隐私问题和耗时的手动标记,医学成像领域很难收集到这些数据集。生成对抗网络(GAN)可以缓解这些挑战,实现可共享数据的合成。虽然二维 GAN 已被用于生成具有相应标签的二维图像,但它们无法捕获三维医学成像的体积信息。三维 GAN 更适合于此,已被用于生成三维体积,但不能生成相应的标签。原因之一可能是由于计算限制,合成三维体积具有挑战性。在这项工作中,我们提出了使用混合精度来缓解计算约束的生成具有相应标签的三维医学图像体积的三维 GAN。我们生成了具有相应脑血管分割标签的三维时飞磁共振血管造影(TOF-MRA)斑块。我们使用了四种变体的三维 Wasserstein GAN(WGAN),分别是:1)梯度惩罚(GP),2)带谱归一化(SN)的 GP,3)带混合精度(SN-MP)的 SN,以及 4)带每一层双滤波器的 SN-MP(c-SN-MP)。使用 Fréchet Inception Distance(FID)和分布精度和召回率(PRD)对生成的斑块进行定量评估。此外,使用来自不同 WGAN 模型的斑块-标签对训练三维 U-Net,并将其性能与基于真实数据训练的基准 U-Net 的性能进行比较。使用 Dice Similarity Coefficient(DSC)和平衡平均 Hausdorff Distance(bAVD)评估所有 U-Net 模型的分割性能,a)所有血管,b)颅内血管。我们的结果表明,使用混合精度(SN-MP 和 c-SN-MP)生成的 WGAN 模型生成的斑块具有最低的 FID 分数和最佳的 PRD 曲线。在使用合成斑块-标签对训练的三维 U-Net 中,与基于真实数据训练的基准 U-Net(DSC 为 0.901;bAVD 为 0.294)相比,c-SN-MP 对生成的颅内血管的 DSC(0.841)最高,bAVD(0.508)最低。总之,我们的解决方案生成了用于脑血管分割的逼真的三维 TOF-MRA 斑块和标签。我们证明了使用混合精度提高计算效率的好处,从而产生性能最佳的 GAN 架构。我们的工作为共享标记的 3D 医学数据铺平了道路,这将提高深度学习模型在临床应用中的泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验