文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

将人工智能培训融入放射科住院医师培训计划的框架:培养未来的放射科医生。

A framework to integrate artificial intelligence training into radiology residency programs: preparing the future radiologist.

作者信息

van Kooten Maria Jorina, Tan Can Ozan, Hofmeijer Elfi Inez Saïda, van Ooijen Peter Martinus Adrianus, Noordzij Walter, Lamers Maria Jolanda, Kwee Thomas Christian, Vliegenthart Rozemarijn, Yakar Derya

机构信息

Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.

Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.

出版信息

Insights Imaging. 2024 Jan 17;15(1):15. doi: 10.1186/s13244-023-01595-3.


DOI:10.1186/s13244-023-01595-3
PMID:38228800
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10792147/
Abstract

OBJECTIVES: To present a framework to develop and implement a fast-track artificial intelligence (AI) curriculum into an existing radiology residency program, with the potential to prepare a new generation of AI conscious radiologists. METHODS: The AI-curriculum framework comprises five sequential steps: (1) forming a team of AI experts, (2) assessing the residents' knowledge level and needs, (3) defining learning objectives, (4) matching these objectives with effective teaching strategies, and finally (5) implementing and evaluating the pilot. Following these steps, a multidisciplinary team of AI engineers, radiologists, and radiology residents designed a 3-day program, including didactic lectures, hands-on laboratory sessions, and group discussions with experts to enhance AI understanding. Pre- and post-curriculum surveys were conducted to assess participants' expectations and progress and were analyzed using a Wilcoxon rank-sum test. RESULTS: There was 100% response rate to the pre- and post-curriculum survey (17 and 12 respondents, respectively). Participants' confidence in their knowledge and understanding of AI in radiology significantly increased after completing the program (pre-curriculum means 3.25 ± 1.48 (SD), post-curriculum means 6.5 ± 0.90 (SD), p-value = 0.002). A total of 75% confirmed that the course addressed topics that were applicable to their work in radiology. Lectures on the fundamentals of AI and group discussions with experts were deemed most useful. CONCLUSION: Designing an AI curriculum for radiology residents and implementing it into a radiology residency program is feasible using the framework presented. The 3-day AI curriculum effectively increased participants' perception of knowledge and skills about AI in radiology and can serve as a starting point for further customization. CRITICAL RELEVANCE STATEMENT: The framework provides guidance for developing and implementing an AI curriculum in radiology residency programs, educating residents on the application of AI in radiology and ultimately contributing to future high-quality, safe, and effective patient care. KEY POINTS: • AI education is necessary to prepare a new generation of AI-conscious radiologists. • The AI curriculum increased participants' perception of AI knowledge and skills in radiology. • This five-step framework can assist integrating AI education into radiology residency programs.

摘要

目标:提出一个框架,用于在现有的放射科住院医师培训项目中开发并实施快速人工智能(AI)课程,有潜力培养新一代具备人工智能意识的放射科医生。 方法:人工智能课程框架包括五个连续步骤:(1)组建人工智能专家团队;(2)评估住院医师的知识水平和需求;(3)确定学习目标;(4)将这些目标与有效的教学策略相匹配;最后(5)实施并评估试点。按照这些步骤,一个由人工智能工程师、放射科医生和放射科住院医师组成的多学科团队设计了一个为期3天的项目,包括理论讲座、实践实验室课程以及与专家的小组讨论,以增强对人工智能的理解。在课程前后进行了调查,以评估参与者的期望和进展,并使用Wilcoxon秩和检验进行分析。 结果:课程前后调查的回复率均为100%(分别有17名和12名受访者)。完成该项目后,参与者对其在放射学中人工智能知识和理解的信心显著增强(课程前平均分为3.25±1.48(标准差),课程后平均分为6.5±0.90(标准差),p值 = 0.002)。共有75%的人确认该课程涉及的主题适用于他们在放射学中的工作。关于人工智能基础的讲座以及与专家的小组讨论被认为最有用。 结论:使用所提出的框架为放射科住院医师设计人工智能课程并将其纳入放射科住院医师培训项目是可行的。为期3天的人工智能课程有效地提高了参与者对放射学中人工智能知识和技能的认知,可作为进一步定制的起点。 关键相关性声明:该框架为在放射科住院医师培训项目中开发和实施人工智能课程提供了指导,对住院医师进行人工智能在放射学中的应用教育,并最终为未来高质量、安全和有效的患者护理做出贡献。 要点:• 人工智能教育对于培养新一代具备人工智能意识的放射科医生是必要的。• 人工智能课程提高了参与者对放射学中人工智能知识和技能的认知。• 这个五步框架有助于将人工智能教育融入放射科住院医师培训项目。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4741/10792147/c35f14ac8338/13244_2023_1595_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4741/10792147/03b3e1d01304/13244_2023_1595_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4741/10792147/7349a6d3d29a/13244_2023_1595_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4741/10792147/495c29a83a86/13244_2023_1595_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4741/10792147/c35f14ac8338/13244_2023_1595_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4741/10792147/03b3e1d01304/13244_2023_1595_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4741/10792147/7349a6d3d29a/13244_2023_1595_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4741/10792147/495c29a83a86/13244_2023_1595_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4741/10792147/c35f14ac8338/13244_2023_1595_Fig4_HTML.jpg

相似文献

[1]
A framework to integrate artificial intelligence training into radiology residency programs: preparing the future radiologist.

Insights Imaging. 2024-1-17

[2]
An Artificial Intelligence Training Workshop for Diagnostic Radiology Residents.

Radiol Artif Intell. 2023-2-8

[3]
Artificial Intelligence/Machine Learning Education in Radiology: Multi-institutional Survey of Radiology Residents in the United States.

Acad Radiol. 2023-7

[4]
Systematic Review of Radiology Residency Artificial Intelligence Curricula: Preparing Future Radiologists for the Artificial Intelligence Era.

J Am Coll Radiol. 2023-6

[5]
Artificial intelligence-based decision support system (AI-DSS) implementation in radiology residency: Introducing residents to AI in the clinical setting.

Clin Imaging. 2022-12

[6]
The Impact of an Artificial Intelligence Certificate Program on Radiology Resident Education.

Acad Radiol. 2024-11

[7]
AI-RADS: An Artificial Intelligence Curriculum for Residents.

Acad Radiol. 2021-12

[8]
Attitudes toward artificial intelligence in radiology with learner needs assessment within radiology residency programmes: a national multi-programme survey.

Singapore Med J. 2021-3

[9]
AI-RADS: Successes and challenges of a novel artificial intelligence curriculum for radiologists across different delivery formats.

Front Med Technol. 2023-1-4

[10]
Artificial Intelligence Curriculum Needs Assessment for a Pediatric Radiology Fellowship Program: What, How, and Why?

Acad Radiol. 2023-2

引用本文的文献

[1]
Evaluating Artificial Intelligence and Traditional Learning Tools for Chest X-Ray Interpretation: A Descriptive Study.

Clin Teach. 2025-8

[2]
Curriculum check, 2025-equipping radiology residents for AI challenges of tomorrow.

Abdom Radiol (NY). 2025-6-9

[3]
Expert consensus on feasibility and application of automatic pain assessment in routine clinical use.

J Anesth Analg Crit Care. 2025-6-2

[4]
Enhancing Radiologist Productivity with Artificial Intelligence in Magnetic Resonance Imaging (MRI): A Narrative Review.

Diagnostics (Basel). 2025-4-30

[5]
Perceptions and attitudes towards AI among trainee and qualified radiologists at selected South African training hospitals.

SA J Radiol. 2025-1-10

[6]
Knowledge, Attitudes, Perceptions, and Practices Related to Artificial Intelligence in Radiology Among Indian Radiologists and Residents: A Multicenter Nationwide Study.

Cureus. 2024-12-31

[7]
Upskilling or deskilling? Measurable role of an AI-supported training for radiology residents: a lesson from the pandemic.

Insights Imaging. 2025-1-29

[8]
The Value of Non-Clinical Applications of Artificial Intelligence in Radiology Should Be Noted.

Korean J Radiol. 2024-12

[9]
Enhancing medical imaging education: integrating computing technologies, digital image processing and artificial intelligence.

J Med Radiat Sci. 2025-3

[10]
Revolutionizing Radiology With Artificial Intelligence.

Cureus. 2024-10-29

本文引用的文献

[1]
Prospective implementation of AI-assisted screen reading to improve early detection of breast cancer.

Nat Med. 2023-12

[2]
An Artificial Intelligence Training Workshop for Diagnostic Radiology Residents.

Radiol Artif Intell. 2023-2-8

[3]
Artificial Intelligence/Machine Learning Education in Radiology: Multi-institutional Survey of Radiology Residents in the United States.

Acad Radiol. 2023-7

[4]
Competencies for the Use of Artificial Intelligence in Primary Care.

Ann Fam Med. 2022

[5]
Artificial intelligence-based decision support system (AI-DSS) implementation in radiology residency: Introducing residents to AI in the clinical setting.

Clin Imaging. 2022-12

[6]
A "Bumper-Car" Curriculum for Teaching Deep Learning to Radiology Residents.

Acad Radiol. 2022-5

[7]
Imaging AI in Practice: A Demonstration of Future Workflow Using Integration Standards.

Radiol Artif Intell. 2021-10-27

[8]
An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: expectations, hurdles to implementation, and education.

Eur Radiol. 2021-11

[9]
Preparing Radiologists to Lead in the Era of Artificial Intelligence: Designing and Implementing a Focused Data Science Pathway for Senior Radiology Residents.

Radiol Artif Intell. 2020-11-4

[10]
Artificial intelligence in radiology: 100 commercially available products and their scientific evidence.

Eur Radiol. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索