van Kooten Maria Jorina, Tan Can Ozan, Hofmeijer Elfi Inez Saïda, van Ooijen Peter Martinus Adrianus, Noordzij Walter, Lamers Maria Jolanda, Kwee Thomas Christian, Vliegenthart Rozemarijn, Yakar Derya
Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
Insights Imaging. 2024 Jan 17;15(1):15. doi: 10.1186/s13244-023-01595-3.
OBJECTIVES: To present a framework to develop and implement a fast-track artificial intelligence (AI) curriculum into an existing radiology residency program, with the potential to prepare a new generation of AI conscious radiologists. METHODS: The AI-curriculum framework comprises five sequential steps: (1) forming a team of AI experts, (2) assessing the residents' knowledge level and needs, (3) defining learning objectives, (4) matching these objectives with effective teaching strategies, and finally (5) implementing and evaluating the pilot. Following these steps, a multidisciplinary team of AI engineers, radiologists, and radiology residents designed a 3-day program, including didactic lectures, hands-on laboratory sessions, and group discussions with experts to enhance AI understanding. Pre- and post-curriculum surveys were conducted to assess participants' expectations and progress and were analyzed using a Wilcoxon rank-sum test. RESULTS: There was 100% response rate to the pre- and post-curriculum survey (17 and 12 respondents, respectively). Participants' confidence in their knowledge and understanding of AI in radiology significantly increased after completing the program (pre-curriculum means 3.25 ± 1.48 (SD), post-curriculum means 6.5 ± 0.90 (SD), p-value = 0.002). A total of 75% confirmed that the course addressed topics that were applicable to their work in radiology. Lectures on the fundamentals of AI and group discussions with experts were deemed most useful. CONCLUSION: Designing an AI curriculum for radiology residents and implementing it into a radiology residency program is feasible using the framework presented. The 3-day AI curriculum effectively increased participants' perception of knowledge and skills about AI in radiology and can serve as a starting point for further customization. CRITICAL RELEVANCE STATEMENT: The framework provides guidance for developing and implementing an AI curriculum in radiology residency programs, educating residents on the application of AI in radiology and ultimately contributing to future high-quality, safe, and effective patient care. KEY POINTS: • AI education is necessary to prepare a new generation of AI-conscious radiologists. • The AI curriculum increased participants' perception of AI knowledge and skills in radiology. • This five-step framework can assist integrating AI education into radiology residency programs.
目标:提出一个框架,用于在现有的放射科住院医师培训项目中开发并实施快速人工智能(AI)课程,有潜力培养新一代具备人工智能意识的放射科医生。 方法:人工智能课程框架包括五个连续步骤:(1)组建人工智能专家团队;(2)评估住院医师的知识水平和需求;(3)确定学习目标;(4)将这些目标与有效的教学策略相匹配;最后(5)实施并评估试点。按照这些步骤,一个由人工智能工程师、放射科医生和放射科住院医师组成的多学科团队设计了一个为期3天的项目,包括理论讲座、实践实验室课程以及与专家的小组讨论,以增强对人工智能的理解。在课程前后进行了调查,以评估参与者的期望和进展,并使用Wilcoxon秩和检验进行分析。 结果:课程前后调查的回复率均为100%(分别有17名和12名受访者)。完成该项目后,参与者对其在放射学中人工智能知识和理解的信心显著增强(课程前平均分为3.25±1.48(标准差),课程后平均分为6.5±0.90(标准差),p值 = 0.002)。共有75%的人确认该课程涉及的主题适用于他们在放射学中的工作。关于人工智能基础的讲座以及与专家的小组讨论被认为最有用。 结论:使用所提出的框架为放射科住院医师设计人工智能课程并将其纳入放射科住院医师培训项目是可行的。为期3天的人工智能课程有效地提高了参与者对放射学中人工智能知识和技能的认知,可作为进一步定制的起点。 关键相关性声明:该框架为在放射科住院医师培训项目中开发和实施人工智能课程提供了指导,对住院医师进行人工智能在放射学中的应用教育,并最终为未来高质量、安全和有效的患者护理做出贡献。 要点:• 人工智能教育对于培养新一代具备人工智能意识的放射科医生是必要的。• 人工智能课程提高了参与者对放射学中人工智能知识和技能的认知。• 这个五步框架有助于将人工智能教育融入放射科住院医师培训项目。
Radiol Artif Intell. 2023-2-8
Acad Radiol. 2021-12
Abdom Radiol (NY). 2025-6-9
J Anesth Analg Crit Care. 2025-6-2
Diagnostics (Basel). 2025-4-30
Korean J Radiol. 2024-12
Cureus. 2024-10-29
Radiol Artif Intell. 2023-2-8
Ann Fam Med. 2022
Acad Radiol. 2022-5
Radiol Artif Intell. 2021-10-27