Suppr超能文献

用人工智能革新放射学。

Revolutionizing Radiology With Artificial Intelligence.

作者信息

Bhandari Abhiyan

机构信息

General Medicine, Wexham Park Hospital, Slough, GBR.

出版信息

Cureus. 2024 Oct 29;16(10):e72646. doi: 10.7759/cureus.72646. eCollection 2024 Oct.

Abstract

Artificial intelligence (AI) is rapidly transforming the field of radiology, offering significant advancements in diagnostic accuracy, workflow efficiency, and patient care. This article explores AI's impact on various subfields of radiology, emphasizing its potential to improve clinical practices and enhance patient outcomes. AI-driven technologies such as machine learning, deep learning, and natural language processing (NLP) are playing a pivotal role in automating routine tasks, aiding in early disease detection, and supporting clinical decision-making, allowing radiologists to focus on more complex diagnostic challenges. Key applications of AI in radiology include improving image analysis through computer-aided diagnosis (CAD) systems, which enhance the detection of abnormalities in imaging, such as tumors. AI tools have demonstrated high accuracy in analyzing medical images, integrating data from multiple imaging modalities such as CT, MRI, and PET to provide comprehensive diagnostic insights. These advancements facilitate personalized treatment planning and complement radiologists' workflows. However, for AI to be fully integrated into radiology workflows, several challenges must be addressed, including ensuring transparency in how AI algorithms work, protecting patient data, and avoiding biases that could affect diverse populations. Developing explainable AI systems that can clearly show how decisions are made is crucial, as is ensuring AI tools can seamlessly fit into existing radiology systems. Collaboration between radiologists, AI developers, and policymakers, alongside strong ethical guidelines and regulatory oversight, will be key to ensuring AI is implemented safely and effectively in clinical practice. Overall, AI holds tremendous promise in revolutionizing radiology. Through its ability to automate complex tasks, enhance diagnostic capabilities, and streamline workflows, AI has the potential to significantly improve the quality and efficiency of radiology practices. Continued research, development, and collaboration will be crucial in unlocking AI's full potential and addressing the challenges that accompany its adoption.

摘要

人工智能(AI)正在迅速改变放射学领域,在诊断准确性、工作流程效率和患者护理方面取得了重大进展。本文探讨了人工智能对放射学各个子领域的影响,强调了其改善临床实践和提高患者治疗效果的潜力。机器学习、深度学习和自然语言处理(NLP)等人工智能驱动的技术在自动化常规任务、辅助早期疾病检测和支持临床决策方面发挥着关键作用,使放射科医生能够专注于更复杂的诊断挑战。人工智能在放射学中的关键应用包括通过计算机辅助诊断(CAD)系统改进图像分析,该系统可增强对成像中异常情况(如肿瘤)的检测。人工智能工具在分析医学图像方面已显示出高准确性,它整合了来自CT、MRI和PET等多种成像模态的数据,以提供全面的诊断见解。这些进展有助于制定个性化治疗方案,并补充放射科医生的工作流程。然而,要使人工智能完全融入放射学工作流程,必须解决几个挑战,包括确保人工智能算法的工作方式具有透明度、保护患者数据以及避免可能影响不同人群的偏差。开发能够清晰展示决策过程的可解释人工智能系统至关重要,确保人工智能工具能够无缝融入现有的放射学系统也同样重要。放射科医生、人工智能开发者和政策制定者之间的合作,以及强有力的道德准则和监管监督,将是确保人工智能在临床实践中安全有效实施的关键。总体而言,人工智能在彻底改变放射学方面具有巨大潜力。通过其自动化复杂任务、增强诊断能力和简化工作流程的能力,人工智能有潜力显著提高放射学实践的质量和效率。持续的研究、开发和合作对于释放人工智能的全部潜力以及应对其应用带来的挑战至关重要。

相似文献

1
Revolutionizing Radiology With Artificial Intelligence.用人工智能革新放射学。
Cureus. 2024 Oct 29;16(10):e72646. doi: 10.7759/cureus.72646. eCollection 2024 Oct.
3
Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare.解开伦理谜团:医疗保健领域的人工智能
Cureus. 2023 Aug 10;15(8):e43262. doi: 10.7759/cureus.43262. eCollection 2023 Aug.
5
Smart Smile: Revolutionizing Dentistry With Artificial Intelligence.智能微笑:用人工智能变革牙科。
Cureus. 2023 Jun 30;15(6):e41227. doi: 10.7759/cureus.41227. eCollection 2023 Jun.

引用本文的文献

本文引用的文献

3
Role of artificial intelligence in brain tumour imaging.人工智能在脑肿瘤成像中的作用。
Eur J Radiol. 2024 Jul;176:111509. doi: 10.1016/j.ejrad.2024.111509. Epub 2024 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验