Suppr超能文献

非线性聚焦超声脉冲诱导的惯性空化行为。

Inertial Cavitation Behaviors Induced by Nonlinear Focused Ultrasound Pulses.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2884-2895. doi: 10.1109/TUFFC.2021.3073347. Epub 2021 Aug 27.

Abstract

Inertial cavitation induced by pulsed high-intensity focused ultrasound (pHIFU) has previously been shown to successfully permeabilize tumor tissue and enhance chemotherapeutic drug uptake. In addition to HIFU frequency, peak rarefactional pressure ( p ), and pulse duration, the threshold for cavitation-induced bioeffects has recently been correlated with asymmetric distortion caused by nonlinear propagation, diffraction and formation of shocks in the focal waveform, and therefore with the transducer F -number. To connect previously observed bioeffects with bubble dynamics and their attendant physical mechanisms, the dependence of inertial cavitation behavior on shock formation was investigated in transparent agarose gel phantoms using high-speed photography and passive cavitation detection (PCD). Agarose phantoms with concentrations ranging from 1.5% to 5% were exposed to 1-ms pulses using three transducers of the same aperture but different focal distances ( F -numbers of 0.77, 1.02, and 1.52). Pulses had central frequencies of 1, 1.5, or 1.9 MHz and a range of p at the focus varying within 1-18 MPa. Three distinct categories of bubble behavior were observed as the acoustic power increased: stationary near-spherical oscillation of individual bubbles, proliferation of multiple bubbles along the pHIFU beam axis, and fanned-out proliferation toward the transducer. Proliferating bubbles were only observed under strongly nonlinear or shock-forming conditions regardless of frequency, and only where the bubbles reached a certain threshold size range. In stiffer gels with higher agarose concentrations, the same pattern of cavitation behavior was observed, but the dimensions of proliferating clouds were smaller. These observations suggest mechanisms that may be involved in bubble proliferation: enhanced growth of bubbles under shock-forming conditions, subsequent shock scattering from the gel-bubble interface, causing an increase in the repetitive tension created by the acoustic wave, and the appearance of a new growing bubble in the proximal direction. Different behaviors corresponded to specific spectral characteristics in the PCD signals: broadband noise in all cases, narrow peaks of backscattered harmonics in the case of stationary bubbles, and broadened, shifted harmonic peaks in the case of proliferating bubbles. The shift in harmonic peaks can be interpreted as a Doppler shift from targets moving at speeds of up to 2 m/s, which correspond to the observed bubble proliferation speeds.

摘要

先前的研究表明,脉冲高强度聚焦超声(pHIFU)诱导的惯性空化可成功地使肿瘤组织穿孔,并增强化疗药物的摄取。除了 HIFU 频率、峰值稀疏压(p)和脉冲持续时间外,最近已经将空化诱导生物效应的阈值与非线性传播引起的不对称失真相关联,与焦点波形中的衍射和冲击波的形成相关联,因此与换能器 F-数相关联。为了将先前观察到的生物效应与气泡动力学及其伴随的物理机制联系起来,使用高速摄影和被动空化检测(PCD)在透明琼脂糖凝胶仿体中研究了惯性空化行为对冲击波形成的依赖性。使用三个孔径相同但焦距不同的换能器(F-数分别为 0.77、1.02 和 1.52),将浓度为 1.5%至 5%的琼脂糖仿体暴露于 1ms 脉冲下。脉冲的中心频率为 1、1.5 或 1.9MHz,焦点处的 p 范围在 1-18MPa 内变化。随着声功率的增加,观察到三种不同的气泡行为类别:单个气泡的近球形稳定振荡、沿 pHIFU 光束轴的多个气泡增殖以及向换能器扇形增殖。无论频率如何,只有在强烈非线性或形成冲击波的条件下才会观察到增殖气泡,并且只有在气泡达到一定的阈值尺寸范围时才会观察到增殖气泡。在琼脂糖浓度较高的较硬凝胶中,观察到相同的空化行为模式,但增殖云的尺寸较小。这些观察结果表明可能涉及气泡增殖的机制:在形成冲击波的条件下增强气泡的生长,随后从凝胶-气泡界面散射冲击波,导致由声波产生的重复张力增加,并在近侧方向出现新的生长气泡。不同的行为对应于 PCD 信号中的特定谱特征:所有情况下均为宽带噪声,静止气泡情况下为反向散射谐波的窄峰,增殖气泡情况下为展宽、移位的谐波峰。谐波峰的位移可以解释为速度高达 2m/s 的目标的多普勒位移,这与观察到的气泡增殖速度相对应。

相似文献

1
Inertial Cavitation Behaviors Induced by Nonlinear Focused Ultrasound Pulses.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2884-2895. doi: 10.1109/TUFFC.2021.3073347. Epub 2021 Aug 27.
3
Dual-Mode 1-D Linear Ultrasound Array for Image-Guided Drug Delivery Enhancement Without Ultrasound Contrast Agents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jul;70(7):693-707. doi: 10.1109/TUFFC.2023.3268603. Epub 2023 Jun 29.
5
Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).
Phys Med Biol. 2016 Sep 21;61(18):6651-6667. doi: 10.1088/0031-9155/61/18/6651. Epub 2016 Aug 19.
6
Dependence of Boiling Histotripsy Treatment Efficiency on HIFU Frequency and Focal Pressure Levels.
Ultrasound Med Biol. 2017 Sep;43(9):1975-1985. doi: 10.1016/j.ultrasmedbio.2017.04.030. Epub 2017 Jun 20.
7
Bubble cloud characteristics and ablation efficiency in dual-frequency intrinsic threshold histotripsy.
Phys Med Biol. 2023 Nov 6;68(22):225006. doi: 10.1088/1361-6560/ad00a5.
8
Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU.
Ultrason Sonochem. 2016 Sep;32:158-164. doi: 10.1016/j.ultsonch.2016.02.025. Epub 2016 Mar 2.
9
A new active cavitation mapping technique for pulsed HIFU applications--bubble Doppler.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Oct;61(10):1698-708. doi: 10.1109/TUFFC.2014.006502.
10
Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.
Ultrasound Med Biol. 2014 Jul;40(7):1523-34. doi: 10.1016/j.ultrasmedbio.2014.01.007. Epub 2014 Mar 6.

引用本文的文献

1
The blood-brain barriers: novel nanocarriers for central nervous system diseases.
J Nanobiotechnology. 2025 Feb 26;23(1):146. doi: 10.1186/s12951-025-03247-8.
3
Dynamic Mode Decomposition for Transient Cavitation Bubbles Imaging in Pulsed High-Intensity Focused Ultrasound Therapy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 May;71(5):596-606. doi: 10.1109/TUFFC.2024.3387351. Epub 2024 May 10.
4
Treatment Planning and Aberration Correction Algorithm for HIFU Ablation of Renal Tumors.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Mar;71(3):341-353. doi: 10.1109/TUFFC.2024.3355390. Epub 2024 Feb 27.
5
Aberration correction in abdominal histotripsy.
Int J Hyperthermia. 2023;40(1):2266594. doi: 10.1080/02656736.2023.2266594. Epub 2023 Oct 9.
6
The histotripsy spectrum: differences and similarities in techniques and instrumentation.
Int J Hyperthermia. 2023;40(1):2233720. doi: 10.1080/02656736.2023.2233720.
7
Chronic effects of pulsed high intensity focused ultrasound aided delivery of gemcitabine in a mouse model of pancreatic cancer.
Ultrasonics. 2023 Jul;132:106993. doi: 10.1016/j.ultras.2023.106993. Epub 2023 Apr 13.
8
Dual-Mode 1-D Linear Ultrasound Array for Image-Guided Drug Delivery Enhancement Without Ultrasound Contrast Agents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jul;70(7):693-707. doi: 10.1109/TUFFC.2023.3268603. Epub 2023 Jun 29.
9
Quantitative Assessment of Boiling Histotripsy Progression Based on Color Doppler Measurements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Dec;69(12):3255-3269. doi: 10.1109/TUFFC.2022.3212266. Epub 2022 Nov 24.
10
Nanotheranostics for Image-Guided Cancer Treatment.
Pharmaceutics. 2022 Apr 22;14(5):917. doi: 10.3390/pharmaceutics14050917.

本文引用的文献

1
The interaction of shockwaves with a vapour bubble in boiling histotripsy: The shock scattering effect.
Ultrason Sonochem. 2021 Jan;70:105312. doi: 10.1016/j.ultsonch.2020.105312. Epub 2020 Aug 18.
2
In Vitro Thrombolytic Efficacy of Single- and Five-Cycle Histotripsy Pulses and rt-PA.
Ultrasound Med Biol. 2020 Feb;46(2):336-349. doi: 10.1016/j.ultrasmedbio.2019.10.009. Epub 2019 Nov 27.
3
Transcutaneous Ultrasound-Mediated Nonviral Gene Delivery to the Liver in a Porcine Model.
Mol Ther Methods Clin Dev. 2019 Jul 26;14:275-284. doi: 10.1016/j.omtm.2019.07.005. eCollection 2019 Sep 13.
6
Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.
Ultrasound Med Biol. 2017 Dec;43(12):2848-2861. doi: 10.1016/j.ultrasmedbio.2017.08.938. Epub 2017 Sep 28.
7
A Prototype Therapy System for Transcutaneous Application of Boiling Histotripsy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1542-1557. doi: 10.1109/TUFFC.2017.2739649. Epub 2017 Aug 14.
8
Ultrasound-Induced Bubble Clusters in Tissue-Mimicking Agar Phantoms.
Ultrasound Med Biol. 2017 Oct;43(10):2318-2328. doi: 10.1016/j.ultrasmedbio.2017.06.013. Epub 2017 Jul 22.
9
Dependence of Boiling Histotripsy Treatment Efficiency on HIFU Frequency and Focal Pressure Levels.
Ultrasound Med Biol. 2017 Sep;43(9):1975-1985. doi: 10.1016/j.ultrasmedbio.2017.04.030. Epub 2017 Jun 20.
10
Effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior.
Phys Med Biol. 2017 Feb 21;62(4):1269-1290. doi: 10.1088/1361-6560/aa54c7. Epub 2016 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验