Al-Rajabi Maha Mohammad, Almanassra Ismail W, Khalil Abdelrahman K A, Atieh Muataz Ali, Laoui Tahar, Khalil Khalil Abdelrazek
Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, UniMAP, Arau 02600, Perlis, Malaysia.
Polymers (Basel). 2023 Nov 30;15(23):4594. doi: 10.3390/polym15234594.
Oil-contaminated water and industrial oily wastewater discharges have adversely affected aquatic ecosystems and human safety. Membrane separation technology offers a promising solution for effective oil-water separation. Thus, a membrane with high surface area, hydrophilic-oleophobic properties, and stability is a promising candidate. Electrospinning, a straightforward and efficient process, produces highly porous polymer-based membranes with a vast surface area and stability. The main objective of this study is to produce hydrophilic-oleophobic polyacrylonitrile (PAN) and cellulose acetate (CA) nanofibers using core-shell electrospinning. Incorporating CA into the shell of the nanofibers enhances the wettability. The core PAN polymer improves the electrospinning process and contributes to the hydrophilicity-oleophobicity of the produced nanofibers. The PAN/CA nanofibers were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, and surface-wetting behavior. The resulting PAN/cellulose nanofibers exhibited significantly improved surface-wetting properties, demonstrating super-hydrophilicity and underwater superoleophobicity, making them a promising choice for oil-water separation. Various oils, including gasoline, diesel, toluene, xylene, and benzene, were employed in the preparation of oil-water mixture solutions. The utilization of PAN/CA nanofibers as a substrate proved to be highly efficient, confirming exceptional separation efficiency, remarkable stability, and prolonged durability. The current work introduces an innovative single-step fabrication method of composite nanofibers, specially designed for efficient oil-water separation. This technology exhibits significant promise for deployment in challenging situations, offering excellent reusability and a remarkable separation efficiency of nearly 99.9%.
含油污水和工业含油废水排放已对水生生态系统和人类安全产生了不利影响。膜分离技术为有效的油水分离提供了一种很有前景的解决方案。因此,具有高表面积、亲水疏油特性和稳定性的膜是一个很有潜力的候选材料。静电纺丝是一种简单高效的工艺,可生产具有大表面积和稳定性的高度多孔聚合物基膜。本研究的主要目的是使用核壳静电纺丝制备亲水疏油的聚丙烯腈(PAN)和醋酸纤维素(CA)纳米纤维。将CA掺入纳米纤维的壳层可提高润湿性。核心的PAN聚合物改善了静电纺丝过程,并有助于所制备纳米纤维的亲水疏油性。通过傅里叶变换红外光谱、场发射扫描电子显微镜、X射线衍射和表面润湿行为对PAN/CA纳米纤维进行了表征。所得的PAN/纤维素纳米纤维表现出显著改善的表面润湿性能,展现出超亲水性和水下超疏油性,使其成为油水分离的一个有前景的选择。在油水混合溶液的制备中使用了包括汽油、柴油、甲苯、二甲苯和苯在内的各种油类。事实证明,将PAN/CA纳米纤维用作基材非常高效,证实了其具有出色的分离效率、显著的稳定性和持久的耐用性。当前的工作介绍了一种创新的复合纳米纤维单步制造方法,专门设计用于高效油水分离。这项技术在具有挑战性的情况下具有显著的应用前景,具有出色的可重复使用性和近99.9%的卓越分离效率。