Hecht Markus, Frey Benjamin, Gaipl Udo S, Tianyu Xie, Eckstein Markus, Donaubauer Anna-Jasmina, Klautke Gunther, Illmer Thomas, Fleischmann Maximilian, Laban Simon, Hautmann Matthias G, Tamaskovics Bálint, Brunner Thomas B, Becker Ina, Zhou Jian-Guo, Hartmann Arndt, Fietkau Rainer, Iro Heinrich, Döllinger Michael, Gostian Antoniu-Oreste, Kist Andreas M
Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany; Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Neoplasia. 2024 Mar;49:100953. doi: 10.1016/j.neo.2023.100953. Epub 2024 Jan 16.
Individual prediction of treatment response is crucial for personalized treatment in multimodal approaches against head-and-neck squamous cell carcinoma (HNSCC). So far, no reliable predictive parameters for treatment schemes containing immunotherapy have been identified. This study aims to predict treatment response to induction chemo-immunotherapy based on the peripheral blood immune status in patients with locally advanced HNSCC.
The peripheral blood immune phenotype was assessed in whole blood samples in patients treated in the phase II CheckRad-CD8 trial as part of the pre-planned translational research program. Blood samples were analyzed by multicolor flow cytometry before (T1) and after (T2) induction chemo-immunotherapy with cisplatin/docetaxel/durvalumab/tremelimumab. Machine Learning techniques were used to predict pathological complete response (pCR) after induction therapy.
The tested classifier methods (LDA, SVM, LR, RF, DT, and XGBoost) allowed a distinct prediction of pCR. Highest accuracy was achieved with a low number of features represented as principal components. Immune parameters obtained from the absolute difference (lT2-T1l) allowed the best prediction of pCR. In general, less than 30 parameters and at most 10 principal components were needed for highly accurate predictions. Across several datasets, cells of the innate immune system such as polymorphonuclear cells, monocytes, and plasmacytoid dendritic cells are most prominent.
Our analyses imply that alterations of the innate immune cell distribution in the peripheral blood following induction chemo-immuno-therapy is highly predictive for pCR in HNSCC.
在针对头颈部鳞状细胞癌(HNSCC)的多模式治疗方法中,个体治疗反应预测对于个性化治疗至关重要。到目前为止,尚未确定包含免疫疗法的治疗方案的可靠预测参数。本研究旨在基于局部晚期HNSCC患者的外周血免疫状态预测诱导化疗免疫治疗的反应。
作为预先计划的转化研究项目的一部分,在II期CheckRad-CD8试验中治疗的患者的全血样本中评估外周血免疫表型。在用顺铂/多西他赛/度伐利尤单抗/曲美木单抗进行诱导化疗免疫治疗之前(T1)和之后(T2),通过多色流式细胞术分析血样。使用机器学习技术预测诱导治疗后的病理完全缓解(pCR)。
所测试的分类器方法(LDA、SVM、LR、RF、DT和XGBoost)能够对pCR进行明确预测。以主成分表示的少量特征实现了最高准确率。从绝对差值(|T2-T1|)获得的免疫参数对pCR的预测效果最佳。一般来说,高精度预测需要少于30个参数和最多10个主成分。在多个数据集中,先天性免疫系统的细胞如多形核细胞、单核细胞和浆细胞样树突状细胞最为突出。
我们分析表明,诱导化疗免疫治疗后外周血中先天性免疫细胞分布的改变对HNSCC中的pCR具有高度预测性。