LaPanse Alaina J, Krishnan Anagha, Dennis Galen, Karns Devin A J, Dahlin Lukas R, Van Wychen Stefanie, Burch Tyson A, Guarnieri Michael T, Weissman Joseph C, Posewitz Matthew C
Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA.
Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA.
Plant Physiol Biochem. 2024 Feb;207:108364. doi: 10.1016/j.plaphy.2024.108364. Epub 2024 Jan 11.
Microalgae are compelling renewable resources with applications including biofuels, bioplastics, nutrient supplements, and cosmetic products. Picochlorum celeri is an alga with high industrial interest due to exemplary outdoor areal biomass productivities in seawater. Detailed proximate analysis is needed in multiple environmental conditions to understand the dynamic biomass compositions of P. celeri, and how these compositions might be leveraged in biotechnological applications. In this study, biomass characterization of P. celeri was performed under nutrient-replete, nitrogen-restricted, and hyper-saline conditions. Nutrient-replete cultivation of P. celeri resulted in protein-rich biomass (∼50% ash-free dry weight) with smaller carbohydrate (∼12% ash-free dry weight) and lipid (∼11% ash-free dry weight) partitions. Gradual nitrogen depletion elicited a shift from proteins to carbohydrates (∼50% ash-free dry weight, day 3) as cells transitioned into the production of storage metabolites. Importantly, dilutions in nitrogen-restricted 40 parts per million (1.43 mM nitrogen) media generated high-carbohydrate (∼50% ash-free dry weight) biomass without substantially compromising biomass productivity (36 g ash-free dry weight m day) despite decreased chlorophyll (∼2% ash-free dry weight) content. This strategy for increasing carbohydrate content allowed for the targeted production of polysaccharides, which could potentially be utilized to produce fuels, oligosaccharides, and bioplastics. Cultivation at 2X sea salts resulted in a shift towards carbohydrates from protein, with significantly increased levels of the amino acid proline, which putatively acts as an osmolyte. A detailed understanding of the biomass composition of P. celeri in nutrient-replete, nitrogen-restricted, and hyper saline conditions informs how this strain can be useful in the production of biotechnological products.
微藻是极具吸引力的可再生资源,其应用包括生物燃料、生物塑料、营养补充剂和化妆品。纤细皮果藻是一种具有很高工业价值的藻类,因其在海水中具有出色的室外单位面积生物量生产力。需要在多种环境条件下进行详细的近似分析,以了解纤细皮果藻的动态生物量组成,以及这些组成如何在生物技术应用中得到利用。在本研究中,在营养充足、氮限制和高盐条件下对纤细皮果藻进行了生物量表征。纤细皮果藻在营养充足的培养条件下产生了富含蛋白质的生物量(约占无灰干重的50%),碳水化合物(约占无灰干重的12%)和脂质(约占无灰干重的11%)的比例较小。随着细胞转变为储存代谢物的生产,氮的逐渐消耗导致从蛋白质向碳水化合物的转变(约占无灰干重的50%,第3天)。重要的是,在氮限制的百万分之40(1.43 mM氮)培养基中稀释,产生了高碳水化合物(约占无灰干重的50%)生物量,尽管叶绿素含量(约占无灰干重的2%)下降,但并未显著影响生物量生产力(36 g无灰干重/平方米/天)。这种增加碳水化合物含量的策略允许有针对性地生产多糖,这些多糖有可能用于生产燃料、低聚糖和生物塑料。在2倍海盐浓度下培养导致从蛋白质向碳水化合物的转变,脯氨酸水平显著增加,脯氨酸被认为是一种渗透剂。对纤细皮果藻在营养充足、氮限制和高盐条件下生物量组成的详细了解,为该菌株如何用于生物技术产品的生产提供了信息。