The Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
Lady Davis Institute for Cancer Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.
Int J Gynaecol Obstet. 2024 Jun;165(3):1257-1260. doi: 10.1002/ijgo.15365. Epub 2024 Jan 17.
OBJECTIVES: To use machine learning to optimize the detection of obstetrics and gynecology (OBGYN) Chat Generative Pre-trained Transformer (ChatGPT) -written abstracts of all OBGYN journals. METHODS: We used Web of Science to identify all original articles published in all OBGYN journals in 2022. Seventy-five original articles were randomly selected. For each, we prompted ChatGPT to write an abstract based on the title and results of the original abstracts. Each abstract was tested by Grammarly software and reports were inserted into a database. Machine-learning modes were trained and examined on the database created. RESULTS: Overall, 75 abstracts from 12 different OBGYN journals were randomly selected. There were seven (58%) Q1 journals, one (8%) Q2 journal, two (17%) Q3 journals, and two (17%) Q4 journals. Use of mixed dialects of English, absence of comma-misuse, absence of incorrect verb forms, and improper formatting were important prediction variables of ChatGPT-written abstracts. The deep-learning model had the highest predictive performance of all examined models. This model achieved the following performance: accuracy 0.90, precision 0.92, recall 0.85, area under the curve 0.95. CONCLUSIONS: Machine-learning-based tools reach high accuracy in identifying ChatGPT-written OBGYN abstracts.
目的:利用机器学习优化检测妇产科(OBGYN)ChatGPT 生成的所有妇产科期刊摘要。
方法:我们使用 Web of Science 识别了 2022 年所有妇产科期刊发表的所有原始文章。随机选择了 75 篇原始文章。对于每一篇文章,我们提示 ChatGPT 根据原始摘要的标题和结果撰写摘要。每个摘要都经过 Grammarly 软件测试,并将报告插入数据库。在创建的数据库上训练和检查机器学习模式。
结果:总体而言,随机选择了来自 12 种不同妇产科期刊的 75 篇摘要。其中有 7 种(58%)是 Q1 期刊,1 种(8%)是 Q2 期刊,2 种(17%)是 Q3 期刊,2 种(17%)是 Q4 期刊。混合英语方言的使用、逗号误用的缺失、不正确的动词形式的缺失和不正确的格式设置是 ChatGPT 撰写的摘要的重要预测变量。深度学习模型是所有检查模型中预测性能最高的模型。该模型的性能如下:准确性为 0.90,精度为 0.92,召回率为 0.85,曲线下面积为 0.95。
结论:基于机器学习的工具在识别 ChatGPT 撰写的妇产科摘要方面具有很高的准确性。
Int J Gynaecol Obstet. 2024-6
Am J Obstet Gynecol. 2024-8
Int J Gynaecol Obstet. 2024-8
Int J Gynaecol Obstet. 2024-6
JAMA Netw Open. 2019-12-2
Arch Gynecol Obstet. 2023-12
Int J Gynaecol Obstet. 2024-3
Int J Gynecol Cancer. 2024-5-6
Obstet Gynecol Sci. 2024-3