文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

知己知彼——用机器学习识别由 ChatGPT 撰写的妇产科摘要。

It takes one to know one-Machine learning for identifying OBGYN abstracts written by ChatGPT.

机构信息

The Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

Lady Davis Institute for Cancer Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.

出版信息

Int J Gynaecol Obstet. 2024 Jun;165(3):1257-1260. doi: 10.1002/ijgo.15365. Epub 2024 Jan 17.


DOI:10.1002/ijgo.15365
PMID:38234125
Abstract

OBJECTIVES: To use machine learning to optimize the detection of obstetrics and gynecology (OBGYN) Chat Generative Pre-trained Transformer (ChatGPT) -written abstracts of all OBGYN journals. METHODS: We used Web of Science to identify all original articles published in all OBGYN journals in 2022. Seventy-five original articles were randomly selected. For each, we prompted ChatGPT to write an abstract based on the title and results of the original abstracts. Each abstract was tested by Grammarly software and reports were inserted into a database. Machine-learning modes were trained and examined on the database created. RESULTS: Overall, 75 abstracts from 12 different OBGYN journals were randomly selected. There were seven (58%) Q1 journals, one (8%) Q2 journal, two (17%) Q3 journals, and two (17%) Q4 journals. Use of mixed dialects of English, absence of comma-misuse, absence of incorrect verb forms, and improper formatting were important prediction variables of ChatGPT-written abstracts. The deep-learning model had the highest predictive performance of all examined models. This model achieved the following performance: accuracy 0.90, precision 0.92, recall 0.85, area under the curve 0.95. CONCLUSIONS: Machine-learning-based tools reach high accuracy in identifying ChatGPT-written OBGYN abstracts.

摘要

目的:利用机器学习优化检测妇产科(OBGYN)ChatGPT 生成的所有妇产科期刊摘要。

方法:我们使用 Web of Science 识别了 2022 年所有妇产科期刊发表的所有原始文章。随机选择了 75 篇原始文章。对于每一篇文章,我们提示 ChatGPT 根据原始摘要的标题和结果撰写摘要。每个摘要都经过 Grammarly 软件测试,并将报告插入数据库。在创建的数据库上训练和检查机器学习模式。

结果:总体而言,随机选择了来自 12 种不同妇产科期刊的 75 篇摘要。其中有 7 种(58%)是 Q1 期刊,1 种(8%)是 Q2 期刊,2 种(17%)是 Q3 期刊,2 种(17%)是 Q4 期刊。混合英语方言的使用、逗号误用的缺失、不正确的动词形式的缺失和不正确的格式设置是 ChatGPT 撰写的摘要的重要预测变量。深度学习模型是所有检查模型中预测性能最高的模型。该模型的性能如下:准确性为 0.90,精度为 0.92,召回率为 0.85,曲线下面积为 0.95。

结论:基于机器学习的工具在识别 ChatGPT 撰写的妇产科摘要方面具有很高的准确性。

相似文献

[1]
It takes one to know one-Machine learning for identifying OBGYN abstracts written by ChatGPT.

Int J Gynaecol Obstet. 2024-6

[2]
Human vs machine: identifying ChatGPT-generated abstracts in Gynecology and Urogynecology.

Am J Obstet Gynecol. 2024-8

[3]
It takes one to know one-Machine learning for identifying OBGYN abstracts written by ChatGPT.

Int J Gynaecol Obstet. 2024-8

[4]
Letter to the Editor: It takes one to know one-Machine learning for identifying OBGYN abstracts written by ChatGPT.

Int J Gynaecol Obstet. 2024-6

[5]
Assessing the Reproducibility of the Structured Abstracts Generated by ChatGPT and Bard Compared to Human-Written Abstracts in the Field of Spine Surgery: Comparative Analysis.

J Med Internet Res. 2024-6-26

[6]
A Bibliometric Analysis of Top-Cited Journal Articles in Obstetrics and Gynecology.

JAMA Netw Open. 2019-12-2

[7]
Exploring the use of ChatGPT in OBGYN: a bibliometric analysis of the first ChatGPT-related publications.

Arch Gynecol Obstet. 2023-12

[8]
Performance of ChatGPT in French language Parcours d'Accès Spécifique Santé test and in OBGYN.

Int J Gynaecol Obstet. 2024-3

[9]
Association of reviewer experience with discriminating human-written versus ChatGPT-written abstracts.

Int J Gynecol Cancer. 2024-5-6

[10]
Potential applications of ChatGPT in obstetrics and gynecology in Korea: a review article.

Obstet Gynecol Sci. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索