Suppr超能文献

通过熵工程实现NaFe(PO)(PO)中快速稳定的钠存储。

Achieving Fast and Stable Sodium Storage in NaFe(PO)(PO) via Entropy Engineering.

作者信息

Jiang Ning, Wang Xinyu, Zhou Haoran, Wang Yichao, Sun Shouyu, Yang Cheng, Liu Yu

机构信息

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Small. 2024 Jun;20(26):e2308681. doi: 10.1002/smll.202308681. Epub 2024 Jan 17.

Abstract

NaFe(PO)(PO) (NFPP) has been considered a promising cathode material for sodium-ion batteries (SIBs) owing to its environmental friendliness and economic viability. However, its electrochemical performance is constrained by connatural low electronic conductivity and inadequate sodium ion diffusion. Herein, a high-entropy substitution strategy is employed in NFPP to address these limitations. Ex situ X-ray diffraction analysis reveals a single-phase electrochemical reaction during the sodiation/desodiation processes and the increased configurational entropy in HE-NFPP endows an enhanced structure, which results in a minimal volume variation of only 1.83%. Kinetic analysis and density functional theory calculation further confirm that the orbital hybrid synergy of high-entropy transition metals offers a favorable electronic structure, which efficaciously boosts the charge transfer kinetics and optimizes the sodium ion diffusion channel. Based on this versatile strategy, the as-prepared high-entropy NaFeMnMgCoNiCu(PO)(PO) (HE-NFPP) cathode can deliver a prominent rate performance of 55 mAh g at 10 A g and an ultra-long cycling lifespan of over 18 000 cycles at 5 A g. When paired with a hard carbon (HC) anode, HE-NFPP//HC full cell exhibits a favorable cycling durability of 1000 cycles. This high-entropy engineering offers a feasible route to improve the electrochemical performance of NFPP and provides a blueprint for exploring high-performance SIBs.

摘要

NaFe(PO)(PO)(NFPP)因其环境友好性和经济可行性,被认为是一种很有前景的钠离子电池(SIBs)正极材料。然而,其电化学性能受到固有低电子电导率和钠离子扩散不足的限制。在此,在NFPP中采用高熵取代策略来解决这些限制。非原位X射线衍射分析揭示了在钠化/脱钠过程中的单相电化学反应,并且HE-NFPP中增加的组态熵赋予了增强的结构,这导致最小体积变化仅为1.83%。动力学分析和密度泛函理论计算进一步证实,高熵过渡金属的轨道杂化协同作用提供了有利的电子结构,有效地促进了电荷转移动力学并优化了钠离子扩散通道。基于这种通用策略,所制备的高熵NaFeMnMgCoNiCu(PO)(PO)(HE-NFPP)正极在10 A g下可提供55 mAh g的出色倍率性能,在5 A g下具有超过18000次循环的超长循环寿命。当与硬碳(HC)负极配对时,HE-NFPP//HC全电池表现出1000次循环的良好循环耐久性。这种高熵工程为改善NFPP的电化学性能提供了一条可行的途径,并为探索高性能SIBs提供了蓝图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验