Kenn Gerdes is an independent researcher with the residence, Voldmestergade, Copenhagen, Denmark.
mBio. 2024 Feb 14;15(2):e0329323. doi: 10.1128/mbio.03293-23. Epub 2024 Jan 18.
Toxin-antitoxin (TA) modules are prevalent in prokaryotic genomes, often in substantial numbers. For instance, the genome alone harbors close to 100 TA modules, half of which belong to a singular type. Traditionally ascribed multiple biological roles, recent insights challenge these notions and instead indicate a predominant function in phage defense. TAs are often located within Defense Islands, genomic regions that encode various defense systems. The analysis of genes within Defense Islands has unveiled a wide array of systems, including TAs that serve in anti-phage defense. Prokaryotic cells are equipped with anti-phage Viperins that, analogous to their mammalian counterparts, inhibit viral RNA transcription. Additionally, bacterial Structural Maintenance of Chromosome (SMC) proteins combat plasmid intrusion by recognizing foreign DNA signatures. This study undertakes a comprehensive bioinformatics analysis of genetic elements encoding the HicA double-stranded RNA-binding domain, complemented by protein structure modeling. The HicA toxin domains are found in at least 14 distinct contexts and thus exhibit a remarkable genetic diversity. Traditional bicistronic TA operons represent eight of these contexts, while four are characterized by monocistronic operons encoding fused HicA domains. Two contexts involve adjacent to genes that encode bacterial Viperins. Notably, genes encoding RelE toxins are also adjacent to Viperin genes in some instances. This configuration hints at a synergistic enhancement of Viperin-mediated anti-phage action by HicA and RelE toxins. The discovery of a HicA domain merged with an SMC domain is compelling, prompting further investigation into its potential roles.IMPORTANCEProkaryotic organisms harbor a multitude of toxin-antitoxin (TA) systems, which have long puzzled scientists as "genes in search for a function." Recent scientific advancements have shed light on the primary role of TAs as anti-phage defense mechanisms. To gain an overview of TAs it is important to analyze their genetic contexts that can give hints on function and guide future experimental inquiries. This article describes a thorough bioinformatics examination of genes encoding the HicA toxin domain, revealing its presence in no fewer than 14 unique genetic arrangements. Some configurations notably align with anti-phage activities, underscoring potential roles in microbial immunity. These insights robustly reinforce the hypothesis that HicA toxins are integral components of the prokaryotic anti-phage defense repertoire. The elucidation of these genetic contexts not only advances our understanding of TAs but also contributes to a paradigm shift in how we perceive their functionality within the microbial world.
毒素-抗毒素 (TA) 模块在原核基因组中普遍存在,数量通常很多。例如,仅仅是 基因组就拥有近 100 个 TA 模块,其中一半属于单一类型。传统上被赋予多种生物学作用,最近的研究进展挑战了这些观念,而是表明它们在噬菌体防御中起主要作用。TA 通常位于防御岛内部,基因组区域编码各种防御系统。对防御岛基因的分析揭示了广泛的系统,包括在抗噬菌体防御中起作用的 TA。原核细胞配备有抗噬菌体的 Viperin,类似于其哺乳动物对应物,抑制病毒 RNA 转录。此外,细菌结构维持染色体 (SMC) 蛋白通过识别外来 DNA 特征来对抗质粒入侵。本研究对编码 HicA 双链 RNA 结合域的遗传元件进行了全面的生物信息学分析,并辅以蛋白质结构建模。HicA 毒素结构域至少存在于 14 种不同的环境中,因此表现出显著的遗传多样性。传统的双顺反子 TA 操纵子代表了其中的八种环境,而另外四种则由编码融合 HicA 结构域的单顺反子操纵子组成。两种环境涉及到 与编码细菌 Viperin 的基因相邻。值得注意的是,在某些情况下,编码 RelE 毒素的基因也与 Viperin 基因相邻。这种结构暗示了 HicA 和 RelE 毒素协同增强 Viperin 介导的抗噬菌体作用。发现 HicA 结构域与 SMC 结构域融合是令人信服的,这促使进一步研究其潜在作用。重要性原核生物中存在大量的毒素-抗毒素 (TA) 系统,这些系统长期以来一直困扰着科学家,被称为“寻找功能的基因”。最近的科学进展揭示了 TA 的主要作用是作为抗噬菌体防御机制。为了全面了解 TA,分析它们的遗传背景以获得功能线索并指导未来的实验研究是很重要的。本文描述了对编码 HicA 毒素结构域的基因进行全面的生物信息学分析,揭示了它存在于不少于 14 种独特的遗传结构中。一些结构特别与抗噬菌体活性一致,突出了其在微生物免疫中的潜在作用。这些发现有力地支持了 HicA 毒素是原核生物抗噬菌体防御系统的重要组成部分的假设。这些遗传背景的阐明不仅提高了我们对 TA 的理解,而且还推动了我们对微生物世界中 TA 功能的认识的转变。