Ballesteros Francisco, Lao Ka Un
Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA.
Phys Chem Chem Phys. 2024 Jan 31;26(5):4386-4394. doi: 10.1039/d3cp05759c.
In this study, we conduct a comparative analysis of two density matrix construction methods: the generalized many-body expansion for building density matrices (GMBE-DM) based on the set-theoretical principle of inclusion/exclusion and the adjustable density matrix assembler (ADMA) based on the Mulliken-Mezey ansatz. We apply these methods to various noncovalent clusters, including water clusters, ion-water clusters, and ion-pair clusters, using both small 6-31G(d) and large def2-TZVPPD basis sets. Our findings reveal that the GMBE-DM method, particularly when combined with the purification scheme and truncation at the one-body level [GMBE(1)-DM-P], exhibits superior performance across all test systems and basis sets. In contrast, all ADMA set of methods show reasonable results only with small and compact basis sets. For example, GMBE(1)-DM-P outperforms the best ADMA method by at least 4 and 16 times with small and large basis sets, respectively, in the case of (HO). This highlights the significance of the basis set choice for ADMA, which is even more critical than the fragmentation scheme, such as the size of subsystems, while GMBE-DM consistently produces accurate results irrespective of the chosen basis set. Consequently, the efficient and robust GMBE(1)-DM-P approach is recommended as a fragmentation method for generating accurate absolute and relative energies across different binding patterns and basis sets for noncovalent clusters.
在本研究中,我们对两种密度矩阵构建方法进行了比较分析:基于包含/排除集合论原理构建密度矩阵的广义多体展开法(GMBE-DM)和基于穆利肯-梅泽伊假设的可调密度矩阵组装法(ADMA)。我们将这些方法应用于各种非共价簇,包括水簇、离子-水簇和离子对簇,使用了较小的6-31G(d)和较大的def2-TZVPPD基组。我们的研究结果表明,GMBE-DM方法,特别是与纯化方案和一体水平截断相结合时[GMBE(1)-DM-P],在所有测试系统和基组中都表现出卓越的性能。相比之下,所有ADMA方法集仅在使用小而紧凑的基组时才显示出合理的结果。例如,在(HO)的情况下,GMBE(1)-DM-P在小基组和大基组中分别比最佳ADMA方法至少高出4倍和16倍。这突出了基组选择对ADMA的重要性,其甚至比片段化方案(如子系统的大小)更为关键,而GMBE-DM无论选择何种基组都能始终如一地产生准确的结果。因此,高效且稳健的GMBE(1)-DM-P方法被推荐作为一种片段化方法,用于生成不同结合模式和基组下非共价簇的准确绝对和相对能量。