Suppr超能文献

基于CT成像和临床发现的机器学习用于鉴别胰胆管型和肠型壶腹周围癌

Machine learning for differentiating between pancreatobiliary-type and intestinal-type periampullary carcinomas based on CT imaging and clinical findings.

作者信息

Chen Tao, Zhang Danbin, Chen Shaoqing, Lu Juan, Guo Qinger, Cai Shuyang, Yang Hong, Wang Ruixuan, Hu Ziyao, Chen Yang

机构信息

Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.

Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.

出版信息

Abdom Radiol (NY). 2024 Mar;49(3):748-761. doi: 10.1007/s00261-023-04151-1. Epub 2024 Jan 18.

Abstract

PURPOSE

To develop a diagnostic model for distinguishing pancreatobiliary-type and intestinal-type periampullary adenocarcinomas using preoperative contrast-enhanced computed tomography (CT) findings combined with clinical characteristics.

METHODS

This retrospective study included 140 patients with periampullary adenocarcinoma who underwent preoperative enhanced CT, including pancreaticobiliary (N = 100) and intestinal (N = 40) types. They were randomly assigned to the training or internal validation set in an 8:2 ratio. Additionally, an independent external cohort of 28 patients was enrolled. Various CT features of the periampullary region were evaluated and data from clinical and laboratory tests were collected. Five machine learning classifiers were developed to identify the histologic type of periampullary adenocarcinoma, including logistic regression, random forest, multi-layer perceptron, light gradient boosting, and eXtreme gradient boosting (XGBoost).

RESULTS

All machine learning classifiers except multi-layer perceptron used achieved good performance in distinguishing pancreatobiliary-type and intestinal-type adenocarcinomas, with the area under the curve (AUC) ranging from 0.75 to 0.98. The AUC values of the XGBoost classifier in the training set, internal validation set and external validation set are 0.98, 0.89 and 0.84 respectively. The enhancement degree of tumor, the growth pattern of tumor, and carbohydrate antigen 19-9 were the most important factors in the model.

CONCLUSION

Machine learning models combining CT with clinical features can serve as a noninvasive tool to differentiate the histological subtypes of periampullary adenocarcinoma, in particular using the XGBoost classifier.

摘要

目的

利用术前增强计算机断层扫描(CT)结果结合临床特征,开发一种用于区分胰胆管型和肠型壶腹周围腺癌的诊断模型。

方法

这项回顾性研究纳入了140例接受术前增强CT检查的壶腹周围腺癌患者,包括胰胆管型(N = 100)和肠型(N = 40)。他们以8:2的比例被随机分配到训练集或内部验证集。此外,还纳入了一个由28例患者组成的独立外部队列。评估了壶腹周围区域的各种CT特征,并收集了临床和实验室检查数据。开发了五种机器学习分类器来识别壶腹周围腺癌的组织学类型,包括逻辑回归、随机森林、多层感知器、轻梯度提升和极端梯度提升(XGBoost)。

结果

除多层感知器外,所有使用的机器学习分类器在区分胰胆管型和肠型腺癌方面均表现良好,曲线下面积(AUC)范围为0.75至0.98。XGBoost分类器在训练集、内部验证集和外部验证集的AUC值分别为0.98、0.89和0.84。肿瘤强化程度、肿瘤生长方式和糖类抗原19-9是模型中最重要的因素。

结论

结合CT与临床特征的机器学习模型可作为一种无创工具来区分壶腹周围腺癌的组织学亚型,特别是使用XGBoost分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2656/10909762/fd097b547643/261_2023_4151_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验