Suppr超能文献

用于可控合成具有更短锂离子扩散路径的磷酸铁锂正极的高效结构调控平台。

Efficient Structural Regulation Platform for the Controlled Synthesis of LiFePO Cathodes with Shorter Li-Ion Diffusion Paths.

作者信息

Zheng Zihao, Bei Fengli, Zhou Lei, Xia Wenchao, Sun Jitie, Qian Hua

机构信息

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.

China National Quality Inspection and Testing Center for Industrial Explosive Materials, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.

出版信息

Langmuir. 2024 Jan 30;40(4):2396-2404. doi: 10.1021/acs.langmuir.3c03801. Epub 2024 Jan 18.

Abstract

The rate performance of lithium iron phosphate (LiFePO) is mainly limited by its poor electronic conductivity and slow Li-ion diffusion rate. Graphene-based materials are often compounded with LiFePO (LFP) to improve their rate performance, mainly because of their excellent electrical conductivity. Unlike most past composite work focusing on the conductive network between LFP and graphene, in this work, we further developed the functionality of graphene-based materials as nanoparticle carriers, where the nitrogen-doping strategy endows graphene with properties that make it an efficient structural regulation platform during the solvothermal process. Compared to reduced graphene oxide, not only does the nitrogen-doped sites confer more nucleation growth sites for LFP on the graphene surface during the solvothermal process, but also the localized formation of an EG-enriched microenvironment helps to further inhibit the in situ growth of LFP along [010]. The efficient structural regulation platform assisted the synthesis of (010)-oriented LFP with a smaller particle size, which further shortens the Li-ion diffusion paths. The optimized LFP composite electrode materials exhibit a discharge-specific capacity of 133.1 mA·h/g at 10C, which exceeds/is comparable to that of previously reported LFP compounded with graphene-based materials. This work broadens the functionality of graphene-based carriers and provides new ideas for the controllable synthesis of nanoparticles.

摘要

磷酸铁锂(LiFePO)的倍率性能主要受其较差的电子导电性和缓慢的锂离子扩散速率限制。基于石墨烯的材料常与磷酸铁锂(LFP)复合以改善其倍率性能,主要是因为它们具有优异的导电性。与过去大多数专注于LFP与石墨烯之间导电网络的复合工作不同,在本工作中,我们进一步拓展了基于石墨烯的材料作为纳米颗粒载体的功能,其中氮掺杂策略赋予石墨烯一些特性,使其在溶剂热过程中成为一个有效的结构调控平台。与还原氧化石墨烯相比,在溶剂热过程中,氮掺杂位点不仅在石墨烯表面为LFP提供了更多的成核生长位点,而且富含乙二醇(EG)的微环境的局部形成有助于进一步抑制LFP沿[010]方向的原位生长。这个有效的结构调控平台助力合成了粒径更小的(010)取向的LFP,这进一步缩短了锂离子扩散路径。优化后的LFP复合电极材料在10C下的放电比容量为133.1 mA·h/g,超过/与先前报道的与基于石墨烯的材料复合的LFP相当。这项工作拓宽了基于石墨烯的载体的功能,并为纳米颗粒的可控合成提供了新思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验