吴茱萸次碱通过调节SIRT1/FOXO3a/Bim信号通路改善小鼠创伤性脑损伤后的神经功能障碍。

Dehydroevodiamine ameliorates neurological dysfunction after traumatic brain injury in mice via regulating the SIRT1/FOXO3a/Bim pathway.

作者信息

Xu Min, Zhao Yalin, Gong Mingjie, He Ziyang, Wang Wenhua, Li Yunjuan, Zhai Weiwei, Yu Zhengquan

机构信息

Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.

School of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine in Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210023, China.

出版信息

Phytomedicine. 2024 Mar;125:155321. doi: 10.1016/j.phymed.2023.155321. Epub 2023 Dec 26.

Abstract

BACKGROUND

Traumatic Brain Injury (TBI) poses a considerable public health challenge, resulting in mortality, disability, and economic strain. Dehydroevodiamine (DEDM) is a natural compound derived from a traditional Chinese herbal medicine. Prior studies have substantiated the neuroprotective attributes of this compound in the context of TBI. Nevertheless, a comprehensive comprehension of the exact mechanisms responsible for its neuroprotective effects remains elusive. It is imperative to elucidate the precise intrinsic mechanisms underlying the neuroprotective actions of DEDM.

PURPOSE

The aim of this investigation was to elucidate the mechanism underlying DEDM treatment in TBI utilizing both in vivo and in vitro models. Specifically, our focus was on comprehending the impact of DEDM on the Sirtuin1 (SIRT1) / Forkhead box O3 (FOXO3a) / Bcl-2-like protein 11 (Bim) pathway, a pivotal player in TBI-induced cell death attributed to oxidative stress.

STUDY DESIGN AND METHODS

We established a TBI mouse model via the weight drop method. Following continuous intraperitoneal administration, we assessed the neurological dysfunction using the Modified Neurological Severity Score (mNSS) and behavioral assay, followed by sample collection. Secondary brain damage in mice was evaluated through Nissl staining, brain water content measurement, Evans blue detection, and Western blot assays. We scrutinized the expression levels of oxidative stress-related indicators and key proteins for apoptosis. The intricate mechanism of DEDM in TBI was further explored through immunofluorescence, Co-immunoprecipitation (Co-IP) assays, real-time quantitative PCR (RT-qPCR), dual-luciferase assays and western blotting. Additionally, we further investigated the specific therapeutic mechanism of DEDM in an oxidative stress cell model.

RESULTS

The results indicated that DEDM effectively ameliorated oxidative stress and apoptosis post-TBI, mitigating neurological dysfunction and brain injury in mice. DEDM facilitated the deacetylation of FOXO3a by up-regulating the expression of the deacetylase SIRT1, consequently suppressing Bim expression. This mechanism contributed to the alleviation of neurological injury and symptom improvement in TBI-afflicted mice. Remarkably, SIRT1 emerged as a central mediator in the overall treatment mechanism.

CONCLUSIONS

DEDM exerted significant neuroprotective effects on TBI mice by modulating the SIRT1/FOXO3a/Bim pathway. Our innovative research provides a basis for further exploration of the clinical therapeutic potential of DEDM in the context of TBI.

摘要

背景

创伤性脑损伤(TBI)对公共卫生构成了重大挑战,会导致死亡、残疾和经济负担。去氢吴茱萸碱(DEDM)是一种源自传统中药的天然化合物。先前的研究已证实该化合物在TBI背景下具有神经保护特性。然而,对其神经保护作用的确切机制仍缺乏全面的理解。阐明DEDM神经保护作用的精确内在机制势在必行。

目的

本研究旨在利用体内和体外模型阐明DEDM治疗TBI的机制。具体而言,我们重点关注DEDM对沉默调节蛋白1(SIRT1)/叉头框O3(FOXO3a)/Bcl-2样蛋白11(Bim)通路的影响,该通路是TBI诱导的氧化应激导致细胞死亡的关键因素。

研究设计与方法

我们通过重物坠落法建立了TBI小鼠模型。连续腹腔注射后,我们使用改良神经功能缺损评分(mNSS)和行为学检测评估神经功能障碍,随后进行样本采集。通过尼氏染色、脑含水量测量、伊文思蓝检测和蛋白质免疫印迹分析评估小鼠的继发性脑损伤。我们仔细研究了氧化应激相关指标和凋亡关键蛋白的表达水平。通过免疫荧光、免疫共沉淀(Co-IP)分析、实时定量聚合酶链反应(RT-qPCR)、双荧光素酶分析和蛋白质免疫印迹进一步探究DEDM在TBI中的复杂机制。此外,我们在氧化应激细胞模型中进一步研究了DEDM的具体治疗机制。

结果

结果表明,DEDM有效改善了TBI后的氧化应激和细胞凋亡,减轻了小鼠的神经功能障碍和脑损伤。DEDM通过上调去乙酰化酶SIRT1的表达促进FOXO3a的去乙酰化,从而抑制Bim表达。这一机制有助于减轻TBI小鼠的神经损伤并改善症状。值得注意的是,SIRT1在整个治疗机制中是核心介质。

结论

DEDM通过调节SIRT1/FOXO3a/Bim通路对TBI小鼠发挥了显著的神经保护作用。我们的创新性研究为进一步探索DEDM在TBI中的临床治疗潜力提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索