Liu Qin-Qin, Wu Gui-Hua, Wang Xiao-Chun, Xiong Xiao-Wen, Yao Bao-Le
Department of Rehabilitation Medicine, Ganzhou People's Hospital, Ganzhou, China.
Front Mol Neurosci. 2024 Jun 19;17:1424561. doi: 10.3389/fnmol.2024.1424561. eCollection 2024.
Cognitive impairment (COI) is a prevalent complication across a spectrum of brain disorders, underpinned by intricate mechanisms yet to be fully elucidated. Neurons, the principal cell population of the nervous system, orchestrate cognitive processes and govern cognitive balance. Extensive inquiry has spotlighted the involvement of Foxo3a in COI. The regulatory cascade of Foxo3a transactivation implicates multiple downstream signaling pathways encompassing mitochondrial function, oxidative stress, autophagy, and apoptosis, collectively affecting neuronal activity. Notably, the expression and activity profile of neuronal Foxo3a are subject to modulation via various modalities, including methylation of promoter, phosphorylation and acetylation of protein. Furthermore, upstream pathways such as PI3K/AKT, the SIRT family, and diverse micro-RNAs intricately interface with Foxo3a, engendering alterations in neuronal function. Through several downstream routes, Foxo3a regulates neuronal dynamics, thereby modulating the onset or amelioration of COI in Alzheimer's disease, stroke, ischemic brain injury, Parkinson's disease, and traumatic brain injury. Foxo3a is a potential therapeutic cognitive target, and clinical drugs or multiple small molecules have been preliminarily shown to have cognitive-enhancing effects that indirectly affect Foxo3a. Particularly noteworthy are multiple randomized, controlled, placebo clinical trials illustrating the significant cognitive enhancement achievable through autophagy modulation. Here, we discussed the role of Foxo3a in neuron-mediated COI and common cognitively impaired diseases.
认知障碍(COI)是一系列脑部疾病中普遍存在的并发症,其复杂机制尚未完全阐明。神经元作为神经系统的主要细胞群体,协调认知过程并维持认知平衡。广泛的研究已聚焦于Foxo3a在认知障碍中的作用。Foxo3a反式激活的调控级联涉及多个下游信号通路,包括线粒体功能、氧化应激、自噬和凋亡,共同影响神经元活动。值得注意的是,神经元Foxo3a的表达和活性谱可通过多种方式进行调节,包括启动子甲基化、蛋白质磷酸化和乙酰化。此外,诸如PI3K/AKT、SIRT家族和多种微小RNA等上游通路与Foxo3a复杂地相互作用,导致神经元功能改变。通过多条下游途径,Foxo3a调节神经元动态,从而在阿尔茨海默病、中风、缺血性脑损伤、帕金森病和创伤性脑损伤中调节认知障碍的发生或改善。Foxo3a是一个潜在的治疗性认知靶点,临床药物或多种小分子已初步显示出具有间接影响Foxo3a的认知增强作用。特别值得注意的是多项随机、对照、安慰剂临床试验,这些试验表明通过自噬调节可实现显著的认知增强。在此,我们讨论了Foxo3a在神经元介导的认知障碍和常见认知障碍疾病中的作用。