Suppr超能文献

自发性蛛网膜下腔出血良好预后的动态预测的神经介入过渡模型。

Neurological intervention transition model for dynamic prediction of good outcome in spontaneous subarachnoid haemorrhage.

机构信息

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK.

Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan.

出版信息

Sci Rep. 2024 Jan 18;14(1):1584. doi: 10.1038/s41598-024-51684-6.

Abstract

Deterioration of neurovascular conditions can be rapid in patients with spontaneous subarachnoid haemorrhage (SAH) and often lead to poor clinical outcomes. Therefore, it is crucial to promptly assess and continually track the progression of the disease. This study incorporated baseline clinical conditions, repeatedly measured neurological grades and haematological biomarkers for dynamic outcome prediction in patients with spontaneous SAH. Neurological intervention, mainly aneurysm clipping and endovascular embolisation, was also incorporated as an intermediate event in developing a neurological intervention transition (NIT) joint model. A retrospective cohort study was performed on 701 patients in spontaneous SAH with a study period of 14 days from the MIMIC-IV dataset. A dynamic prognostic model predicting outcome of patients was developed based on combination of Cox model and piecewise linear mixed-effect models to incorporate different types of prognostic information. Clinical baseline covariates, including cerebral oedema, cerebral infarction, respiratory failure, hydrocephalus and vasospasm, as well as repeated measured Glasgow Coma Scale (GCS), glucose and white blood cell (WBC) levels were covariates contributing to the optimal model. Incorporation of neurological intervention as an intermediate event increases the prediction performance compared with baseline joint modelling approach. The average AUC of the optimal model proposed in this study is 0.7783 across different starting points of prediction and prediction intervals. The model proposed in this study can provide dynamic prognosis for spontaneous SAH patients and significant potential benefits in critical care management.

摘要

自发性蛛网膜下腔出血(SAH)患者的神经血管状况恶化迅速,往往导致不良的临床结局。因此,及时评估和持续跟踪疾病的进展至关重要。本研究纳入了自发性 SAH 患者的基线临床状况、反复测量的神经学分级和血液生物标志物,以进行动态预后预测。神经介入治疗(主要是动脉瘤夹闭和血管内栓塞)也被纳入发展神经介入过渡(NIT)联合模型的中间事件。对来自 MIMIC-IV 数据集的 701 例自发性 SAH 患者进行了回顾性队列研究,研究期间为 14 天。基于 Cox 模型和分段线性混合效应模型的组合,开发了一种预测患者预后的动态预后模型,以纳入不同类型的预后信息。临床基线协变量,包括脑水肿、脑梗死、呼吸衰竭、脑积水和血管痉挛,以及重复测量的格拉斯哥昏迷量表(GCS)、葡萄糖和白细胞(WBC)水平,是对最佳模型有贡献的协变量。将神经介入作为中间事件纳入可以提高预测性能,与基线联合建模方法相比。本研究中提出的最优模型在不同预测起点和预测区间的平均 AUC 为 0.7783。本研究提出的模型可以为自发性 SAH 患者提供动态预后,并在重症监护管理中具有显著的潜在益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f016/10796364/ce0a797f0a6a/41598_2024_51684_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验