Suppr超能文献

深度学习在多变量纵向和生存数据分析中的动态预测。

Deep learning for the dynamic prediction of multivariate longitudinal and survival data.

机构信息

Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA.

出版信息

Stat Med. 2022 Jul 10;41(15):2894-2907. doi: 10.1002/sim.9392. Epub 2022 Mar 28.

Abstract

The joint model for longitudinal and survival data improves time-to-event predictions by including longitudinal outcome variables in addition to baseline covariates. However, in practice, joint models may be limited by parametric assumptions in both the longitudinal and survival submodels. In addition, computational difficulties arise when considering multiple longitudinal outcomes due to the large number of random effects to be integrated out in the full likelihood. In this article, we discuss several recent machine learning methods for incorporating multivariate longitudinal data for time-to-event prediction. The presented methods use functional data analysis or convolutional neural networks to model the longitudinal data, both of which scale well to multiple longitudinal outcomes. In addition, we propose a novel architecture based on the transformer neural network, named TransformerJM, which jointly models longitudinal and time-to-event data. The prognostic abilities of each model are assessed and compared through both simulation and real data analysis on Alzheimer's disease datasets. Specifically, the models were evaluated based on their ability to dynamically update predictions as new longitudinal data becomes available. We showed that TransformerJM improves upon the predictive performance of existing methods across different scenarios.

摘要

联合纵向和生存数据模型通过在基线协变量之外加入纵向结局变量来改善事件时间预测。然而,在实践中,联合模型可能受到纵向和生存子模型中参数假设的限制。此外,当考虑多个纵向结局时,由于在全似然中需要整合大量随机效应,因此会出现计算困难。在本文中,我们讨论了几种最近的机器学习方法,用于将多元纵向数据纳入事件时间预测。所提出的方法使用功能数据分析或卷积神经网络来对纵向数据进行建模,这两种方法都可以很好地扩展到多个纵向结局。此外,我们提出了一种基于转换器神经网络的新架构,名为 TransformerJM,它联合对纵向数据和事件时间数据进行建模。通过对阿尔茨海默病数据集的模拟和真实数据分析,评估并比较了每个模型的预后能力。具体来说,评估了这些模型根据新的纵向数据可用情况动态更新预测的能力。我们表明,TransformerJM 在不同场景下均提高了现有方法的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a657/9232978/e60efd755d02/nihms-1788764-f0001.jpg

相似文献

2
Dynamic Prediction in Clinical Survival Analysis Using Temporal Convolutional Networks.基于时间卷积网络的临床生存分析中的动态预测。
IEEE J Biomed Health Inform. 2020 Feb;24(2):424-436. doi: 10.1109/JBHI.2019.2929264. Epub 2019 Jul 17.

引用本文的文献

3
A comparative study of methods for dynamic survival analysis.动态生存分析方法的比较研究
Front Neurol. 2025 Feb 18;16:1504535. doi: 10.3389/fneur.2025.1504535. eCollection 2025.

本文引用的文献

1
2021 Alzheimer's disease facts and figures.2021 年阿尔茨海默病事实和数据。
Alzheimers Dement. 2021 Mar;17(3):327-406. doi: 10.1002/alz.12328. Epub 2021 Mar 23.
4
Alzheimer's disease drug development pipeline: 2020.2020年阿尔茨海默病药物研发进展
Alzheimers Dement (N Y). 2020 Jul 16;6(1):e12050. doi: 10.1002/trc2.12050. eCollection 2020.
5
BEHRT: Transformer for Electronic Health Records.BEHRT:电子健康记录的转换器。
Sci Rep. 2020 Apr 28;10(1):7155. doi: 10.1038/s41598-020-62922-y.
7
Dynamic Prediction in Clinical Survival Analysis Using Temporal Convolutional Networks.基于时间卷积网络的临床生存分析中的动态预测。
IEEE J Biomed Health Inform. 2020 Feb;24(2):424-436. doi: 10.1109/JBHI.2019.2929264. Epub 2019 Jul 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验