Titze Vera M, Caixeiro Soraya, Dinh Vinh San, König Matthias, Rübsam Matthias, Pathak Nachiket, Schumacher Anna-Lena, Germer Maximilian, Kukat Christian, Niessen Carien M, Schubert Marcel, Gather Malte C
Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany.
Nat Protoc. 2024 Mar;19(3):928-959. doi: 10.1038/s41596-023-00924-6. Epub 2024 Jan 18.
Integrating micro- and nanolasers into live cells, tissue cultures and small animals is an emerging and rapidly evolving technique that offers noninvasive interrogation and labeling with unprecedented information density. The bright and distinct spectra of such lasers make this approach particularly attractive for high-throughput applications requiring single-cell specificity, such as multiplexed cell tracking and intracellular biosensing. The implementation of these applications requires high-resolution, high-speed spectral readout and advanced analysis routines, which leads to unique technical challenges. Here, we present a modular approach consisting of two separate procedures. The first procedure instructs users on how to efficiently integrate different types of lasers into living cells, and the second procedure presents a workflow for obtaining intracellular lasing spectra with high spectral resolution and up to 125-kHz readout rate and starts from the construction of a custom hyperspectral confocal microscope. We provide guidance on running hyperspectral imaging routines for various experimental designs and recommend specific workflows for processing the resulting large data sets along with an open-source Python library of functions covering the analysis pipeline. We illustrate three applications including the rapid, large-volume mapping of absolute refractive index by using polystyrene microbead lasers, the intracellular sensing of cardiac contractility with polystyrene microbead lasers and long-term cell tracking by using semiconductor nanodisk lasers. Our sample preparation and imaging procedures require 2 days, and setting up the hyperspectral confocal microscope for microlaser characterization requires <2 weeks to complete for users with limited experience in optical and software engineering.
将微纳激光器集成到活细胞、组织培养物和小动物中是一项新兴且快速发展的技术,它能以前所未有的信息密度进行非侵入性询问和标记。此类激光器明亮且独特的光谱使得这种方法对于需要单细胞特异性的高通量应用(如多重细胞追踪和细胞内生物传感)特别有吸引力。这些应用的实现需要高分辨率、高速光谱读出以及先进的分析程序,这带来了独特的技术挑战。在此,我们提出一种由两个独立程序组成的模块化方法。第一个程序指导用户如何有效地将不同类型的激光器集成到活细胞中,第二个程序展示了一个工作流程,用于获得具有高光谱分辨率和高达125千赫兹读出速率的细胞内激光光谱,并且从构建定制的高光谱共聚焦显微镜开始。我们为各种实验设计运行高光谱成像程序提供指导,并推荐用于处理所得大数据集的特定工作流程,以及一个涵盖分析流程的开源Python函数库。我们展示了三个应用,包括使用聚苯乙烯微珠激光器对绝对折射率进行快速、大容量映射,使用聚苯乙烯微珠激光器对心脏收缩性进行细胞内传感,以及使用半导体纳米盘激光器进行长期细胞追踪。我们的样品制备和成像程序需要2天时间,对于在光学和软件工程方面经验有限的用户来说,设置用于微激光表征的高光谱共聚焦显微镜需要不到2周时间来完成。