Suppr超能文献

预测青霉素过敏:美国多中心回顾性研究。

Predicting Penicillin Allergy: A United States Multicenter Retrospective Study.

机构信息

Division of Pulmonary, Allergy, and Sleep Medicine, Department of Medicine, Mayo Clinic, Jacksonville, Fla.

Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minn.

出版信息

J Allergy Clin Immunol Pract. 2024 May;12(5):1181-1191.e10. doi: 10.1016/j.jaip.2024.01.010. Epub 2024 Jan 17.

Abstract

BACKGROUND

Using the reaction history in logistic regression and machine learning (ML) models to predict penicillin allergy has been reported based on non-US data.

OBJECTIVE

We developed ML positive penicillin allergy testing prediction models from multisite US data.

METHODS

Retrospective data from 4 US-based hospitals were grouped into 4 datasets: enriched training (1:3 case-control matched cohort), enriched testing, nonenriched internal testing, and nonenriched external testing. ML algorithms were used for model development. We determined area under the curve (AUC) and applied the Shapley Additive exPlanations (SHAP) framework to interpret risk drivers.

RESULTS

Of 4777 patients (mean age 60 [standard deviation: 17] years; 68% women, 91% White, and 86% non-Hispanic) evaluated for penicillin allergy labels, 513 (11%) had positive penicillin allergy testing. Model input variables were frequently missing: immediate or delayed onset (71%), signs or symptoms (13%), and treatment (31%). The gradient-boosted model was the strongest model with an AUC of 0.67 (95% confidence interval [CI]: 0.57-0.77), which improved to 0.87 (95% CI: 0.73-1) when only cases with complete data were used. Top SHAP drivers for positive testing were reactions within the last year and reactions requiring medical attention; female sex and reaction of hives/urticaria were also positive drivers.

CONCLUSIONS

An ML prediction model for positive penicillin allergy skin testing using US-based retrospective data did not achieve performance strong enough for acceptance and adoption. The optimal ML prediction model for positive penicillin allergy testing was driven by time since reaction, seek medical attention, female sex, and hives/urticaria.

摘要

背景

基于非美国数据,已有研究报告称,利用逻辑回归和机器学习 (ML) 模型中的反应史来预测青霉素过敏。

目的

我们使用来自美国多个地点的数据开发了用于 ML 阳性青霉素过敏检测预测的模型。

方法

将来自美国 4 家医院的回顾性数据分为 4 组数据:富集训练(1:3 病例对照匹配队列)、富集测试、非富集内部测试和非富集外部测试。使用 ML 算法进行模型开发。我们确定了曲线下面积 (AUC),并应用 Shapley Additive exPlanations (SHAP) 框架来解释风险驱动因素。

结果

在评估青霉素过敏标签的 4777 名患者(平均年龄 60 [标准差:17] 岁;68%为女性,91%为白人,86%为非西班牙裔)中,有 513 名(11%)对青霉素过敏检测呈阳性。模型输入变量经常缺失:即刻或迟发性发作(71%)、体征或症状(13%)和治疗(31%)。梯度提升模型是最强的模型,AUC 为 0.67(95%置信区间 [CI]:0.57-0.77),当仅使用完整数据的病例时,AUC 提高到 0.87(95%CI:0.73-1)。阳性检测的顶级 SHAP 驱动因素是过去 1 年内的反应和需要医疗关注的反应;女性和荨麻疹/血管性水肿反应也是阳性驱动因素。

结论

使用基于美国的回顾性数据的 ML 预测模型对阳性青霉素过敏皮肤检测的性能不够强,无法被接受和采用。用于阳性青霉素过敏检测的最佳 ML 预测模型由反应时间、寻求医疗关注、女性和荨麻疹/血管性水肿驱动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验