Suppr超能文献

MitraScore 在老年亚洲心力衰竭患者中的预后影响:FRAGILE-HF 的亚组分析。

Prognostic impact of MitraScore in elderly Asian patients with heart failure: sub-analysis of FRAGILE-HF.

机构信息

Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.

Department of Digital Health and Telemedicine R&D, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan.

出版信息

ESC Heart Fail. 2024 Apr;11(2):1039-1050. doi: 10.1002/ehf2.14658. Epub 2024 Jan 19.

Abstract

AIMS

MitraScore is a novel, simple, and manually calculatable risk score developed as a prognostic model for patients undergoing transcatheter edge-to-edge repair (TEER) for mitral regurgitation. As its components are considered prognostic in heart failure (HF), we aimed to investigate the usefulness of the MitraScore in HF patients.

METHODS AND RESULTS

We calculated MitraScore for 1100 elderly patients (>65 years old) hospitalized for HF in the prospective multicentre FRAGILE-HF study and compared its prognostic ability with other simple risk scores. The primary endpoint was all-cause deaths, and the secondary endpoints were the composite of all-cause deaths and HF rehospitalization and cardiovascular deaths. Overall, the mean age of 1100 patients was 80 ± 8 years, and 58% were men. The mean MitraScore was 3.2 ± 1.4, with a median of 3 (interquartile range: 2-4). A total of 326 (29.6%), 571 (51.9%), and 203 (18.5%) patients were classified into low-, moderate-, and high-risk groups based on the MitraScore, respectively. During a follow-up of 2 years, 226 all-cause deaths, 478 composite endpoints, and 183 cardiovascular deaths were observed. MitraScore successfully stratified patients for all endpoints in the Kaplan-Meier analysis (P < 0.001 for all). In multivariate analyses, MitraScore was significantly associated with all endpoints after covariate adjustments [adjusted hazard ratio (HR) (95% confidence interval): 1.22 (1.10-1.36), P < 0.001 for all-cause deaths; adjusted HR 1.17 (1.09-1.26), P < 0.001 for combined endpoints; and adjusted HR 1.24 (1.10-1.39), P < 0.001 for cardiovascular deaths]. The Hosmer-Lemeshow plot showed good calibration for all endpoints. The net reclassification improvement (NRI) analyses revealed that the MitraScore performed significantly better than other manually calculatable risk scores of HF: the GWTG-HF risk score, the BIOSTAT compact model, the AHEAD score, the AHEAD-U score, and the HANBAH score for all-cause and cardiovascular deaths, with respective continuous NRIs of 0.20, 0.22, 0.39, 0.39, and 0.29 for all-cause mortality (all P-values < 0.01) and 0.20, 0.22, 0.42, 0.40, and 0.29 for cardiovascular mortality (all P-values < 0.02).

CONCLUSIONS

MitraScore developed for patients undergoing TEER also showed strong discriminative power in HF patients. MitraScore was superior to other manually calculable simple risk scores and might be a good choice for risk assessment in clinical practice for patients receiving TEER and those with HF.

摘要

目的

MitraScore 是一种新颖、简单且可手动计算的风险评分,作为经导管缘对缘修复 (TEER) 治疗二尖瓣反流患者的预后模型而开发。由于其组成部分在心力衰竭 (HF) 中被认为具有预后意义,我们旨在研究 MitraScore 在 HF 患者中的应用价值。

方法和结果

我们为前瞻性多中心 FRAGILE-HF 研究中因 HF 住院的 1100 名老年患者(>65 岁)计算了 MitraScore,并将其预后能力与其他简单风险评分进行了比较。主要终点为全因死亡,次要终点为全因死亡和 HF 再住院的复合终点以及心血管死亡。总体而言,1100 名患者的平均年龄为 80±8 岁,58%为男性。MitraScore 的平均值为 3.2±1.4,中位数为 3(四分位距:2-4)。根据 MitraScore,共有 326(29.6%)、571(51.9%)和 203(18.5%)名患者分别被分为低危、中危和高危组。在 2 年的随访期间,观察到 226 例全因死亡、478 例复合终点和 183 例心血管死亡。MitraScore 在 Kaplan-Meier 分析中成功对所有终点进行了分层(所有 P<0.001)。在多变量分析中,在调整协变量后,MitraScore 与所有终点均显著相关[校正后的危险比(HR)(95%置信区间):1.22(1.10-1.36),P<0.001 用于全因死亡;校正 HR 1.17(1.09-1.26),P<0.001 用于联合终点;校正 HR 1.24(1.10-1.39),P<0.001 用于心血管死亡]。Hosmer-Lemeshow 图显示所有终点的校准良好。净重新分类改善(NRI)分析显示,MitraScore 在所有全因和心血管死亡终点方面的表现明显优于其他可手动计算的 HF 风险评分:GWTG-HF 风险评分、BIOSTAT 紧凑型模型、AHEAD 评分、AHEAD-U 评分和 HANBAH 评分,全因死亡率的连续 NRI 分别为 0.20、0.22、0.39、0.39 和 0.29(所有 P 值均<0.01),心血管死亡率的连续 NRI 分别为 0.20、0.22、0.42、0.40 和 0.29(所有 P 值均<0.02)。

结论

专为接受 TEER 治疗的患者开发的 MitraScore 在 HF 患者中也显示出较强的区分能力。MitraScore 优于其他可手动计算的简单风险评分,可能是接受 TEER 治疗的患者和 HF 患者临床实践中风险评估的良好选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/10966225/95e524352f4f/EHF2-11-1039-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验