Suppr超能文献

随机重置下布朗运动的遍历性质

Ergodic properties of Brownian motion under stochastic resetting.

作者信息

Barkai E, Flaquer-Galmés R, Méndez V

机构信息

Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan 52900, Israel.

Grup de Física Estadística, Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.

出版信息

Phys Rev E. 2023 Dec;108(6-1):064102. doi: 10.1103/PhysRevE.108.064102.

Abstract

We study the ergodic properties of one-dimensional Brownian motion with resetting. Using generic classes of statistics of times between resets, we find respectively for thin- or fat-tailed distributions the normalized or non-normalized invariant density of this process. The former case corresponds to known results in the resetting literature and the latter to infinite ergodic theory. Two types of ergodic transitions are found in this system. The first is when the mean waiting time between resets diverges, when standard ergodic theory switches to infinite ergodic theory. The second is when the mean of the square root of time between resets diverges and the properties of the invariant density are drastically modified. We then find a fractional integral equation describing the density of particles. This finite time tool is particularly useful close to the ergodic transition where convergence to asymptotic limits is logarithmically slow. Our study implies rich ergodic behaviors for this nonequilibrium process which should hold far beyond the case of Brownian motion analyzed here.

摘要

我们研究了带重置的一维布朗运动的遍历性质。利用重置之间时间的一般统计类别,我们分别针对薄尾或厚尾分布找到了该过程的归一化或非归一化不变密度。前一种情况对应于重置文献中的已知结果,后一种情况对应于无限遍历理论。在这个系统中发现了两种遍历转变。第一种是当重置之间的平均等待时间发散时,标准遍历理论切换到无限遍历理论。第二种是当重置之间时间的平方根的平均值发散时,不变密度的性质会被大幅修改。然后我们找到了一个描述粒子密度的分数积分方程。这个有限时间工具在接近遍历转变时特别有用,此时收敛到渐近极限的速度是对数缓慢的。我们的研究表明,这个非平衡过程具有丰富的遍历行为,这种行为应该远远超出这里所分析的布朗运动的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验