Suppr超能文献

基于(3-氨丙基)三乙氧基硅烷增强的碳纳米颗粒/羧基化多壁碳纳米管/纤维素纤维复合材料的受触觉小体启发的压阻式传感器,用于纺织电子学。

Tactile corpuscle-inspired piezoresistive sensors based on (3-aminopropyl) triethoxysilane-enhanced CNPs/carboxylated MWCNTs/cellulosic fiber composites for textile electronics.

作者信息

Guo Xiaohui, Zhang Tianxu, Wang Ziang, Zhang Huishan, Yan Zihao, Li Xianghui, Hong Weiqiang, Zhang Anqi, Qian Zhibin, Zhang Xinyi, Shu Yuxin, Wang Jiahao, Hua Liangping, Hong Qi, Zhao Ynong

机构信息

Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China.

Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China.

出版信息

J Colloid Interface Sci. 2024 Apr 15;660:203-214. doi: 10.1016/j.jcis.2024.01.059. Epub 2024 Jan 12.

Abstract

Recently, wearable electronic products and gadgets have developed quickly with the aim of catching up to or perhaps surpassing the ability of human skin to perceive information from the external world, such as pressure and strain. In this study, by first treating the cellulosic fiber (modal textile) substrate with (3-aminopropyl) triethoxysilane (APTES) and then covering it with conductive nanocomposites, a bionic corpuscle layer is produced. The sandwich structure of tactile corpuscle-inspired bionic (TCB) piezoresistive sensors created with the layer-by-layer (LBL) technology consists of a pressure-sensitive module (a bionic corpuscle), interdigital electrodes (a bionic sensory nerve), and a PU membrane (a bionic epidermis). The synergistic mechanism of hydrogen bond and coupling agent helps to improve the adhesive properties of conductive materials, and thus improve the pressure sensitive properties. The TCB sensor possesses favorable sensitivity (1.0005 kPa), a wide linear sensing range (1700 kPa), and a rapid response time (40 ms). The sensor is expected to be applied in a wide range of possible applications including human movement tracking, wearable detection system, and textile electronics.

摘要

近年来,可穿戴电子产品和小工具发展迅速,旨在追赶甚至超越人类皮肤感知外部世界信息(如压力和应变)的能力。在本研究中,首先用(3-氨丙基)三乙氧基硅烷(APTES)处理纤维素纤维(莫代尔织物)基材,然后用导电纳米复合材料覆盖,从而制备出仿生小体层。采用逐层(LBL)技术创建的受触觉小体启发的仿生(TCB)压阻传感器的三明治结构由压敏模块(仿生小体)、叉指电极(仿生感觉神经)和聚氨酯膜(仿生表皮)组成。氢键和偶联剂的协同作用机制有助于提高导电材料的粘附性能,进而改善压敏性能。TCB传感器具有良好的灵敏度(1.0005 kPa)、较宽的线性传感范围(1700 kPa)和快速的响应时间(40 ms)。该传感器有望应用于包括人体运动跟踪、可穿戴检测系统和纺织电子产品在内的广泛可能应用中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验