Ma Lin, Guan Rongfeng, Kang Wenxiang, Sun Zhe, Li Huimin, Li Qiurong, Shen Qianqian, Chen Chaoqiu, Liu Xuguang, Jia Husheng, Xue Jinbo
Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China.
J Colloid Interface Sci. 2024 Apr 15;660:381-392. doi: 10.1016/j.jcis.2024.01.023. Epub 2024 Jan 9.
Single-atom photocatalysts can modulate the utilization of photons and facilitate the migration of photogenerated carriers. However, the preparation of single-atom uniformly doped photocatalysts is still a challenging topic. Herein, we propose the preparation of Ni single-atom doped g-CN photocatalysts by metal vapor exfoliation. The Ni vapor produced by calcining nickel foam at high temperature accumulates in between g-CN layers and poses a certain vapor pressure to destroy the interlayer van der Waals forces of g-CN. Individual metal atoms are doped into the structure while exfoliating g-CN into nanosheets by metal vapor. Upon optimization of Ni content, the Ni single atom doped g-CN nanosheets with 2.81 wt% Ni exhibits the highest CO reduction performance in the absence of sacrificial agents. The generation rates of CO and CH are 19.85 and 1.73 μmol gh, respectively. The improved photocatalytic performance is attributed to the anchoring Ni of single atoms on g-CN nanosheets, which increases both carrier separation efficiency and reaction sites. This work provides insight into the design of photocatalysts with highly dispersed single-atom.
单原子光催化剂可以调节光子的利用,并促进光生载流子的迁移。然而,制备单原子均匀掺杂的光催化剂仍然是一个具有挑战性的课题。在此,我们提出通过金属气相剥离法制备镍单原子掺杂的g-CN光催化剂。通过高温煅烧泡沫镍产生的镍蒸气积聚在g-CN层之间,并施加一定的蒸气压以破坏g-CN的层间范德华力。在通过金属蒸气将g-CN剥离成纳米片的同时,单个金属原子被掺杂到结构中。优化镍含量后,含2.81 wt%镍的镍单原子掺杂g-CN纳米片在无牺牲剂的情况下表现出最高的CO还原性能。CO和CH的生成速率分别为19.85和1.73 μmol g⁻¹ h⁻¹。光催化性能的提高归因于单原子镍锚定在g-CN纳米片上,这提高了载流子分离效率和反应位点。这项工作为设计具有高度分散单原子的光催化剂提供了思路。