Suppr超能文献

多目标指数分布优化器(MOEDO):一种受数学启发的新型多目标算法,用于全局优化和实际工程设计问题。

Multi-objective exponential distribution optimizer (MOEDO): a novel math-inspired multi-objective algorithm for global optimization and real-world engineering design problems.

作者信息

Kalita Kanak, Ramesh Janjhyam Venkata Naga, Cepova Lenka, Pandya Sundaram B, Jangir Pradeep, Abualigah Laith

机构信息

Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, 600 062, India.

University Centre for Research and Development, Chandigarh University, Mohali, 140413, India.

出版信息

Sci Rep. 2024 Jan 20;14(1):1816. doi: 10.1038/s41598-024-52083-7.

Abstract

The exponential distribution optimizer (EDO) represents a heuristic approach, capitalizing on exponential distribution theory to identify global solutions for complex optimization challenges. This study extends the EDO's applicability by introducing its multi-objective version, the multi-objective EDO (MOEDO), enhanced with elite non-dominated sorting and crowding distance mechanisms. An information feedback mechanism (IFM) is integrated into MOEDO, aiming to balance exploration and exploitation, thus improving convergence and mitigating the stagnation in local optima, a notable limitation in traditional approaches. Our research demonstrates MOEDO's superiority over renowned algorithms such as MOMPA, NSGA-II, MOAOA, MOEA/D and MOGNDO. This is evident in 72.58% of test scenarios, utilizing performance metrics like GD, IGD, HV, SP, SD and RT across benchmark test collections (DTLZ, ZDT and various constraint problems) and five real-world engineering design challenges. The Wilcoxon Rank Sum Test (WRST) further confirms MOEDO as a competitive multi-objective optimization algorithm, particularly in scenarios where existing methods struggle with balancing diversity and convergence efficiency. MOEDO's robust performance, even in complex real-world applications, underscores its potential as an innovative solution in the optimization domain. The MOEDO source code is available at: https://github.com/kanak02/MOEDO .

摘要

指数分布优化器(EDO)是一种启发式方法,它利用指数分布理论来为复杂的优化挑战找到全局解决方案。本研究通过引入其多目标版本——多目标EDO(MOEDO),并采用精英非支配排序和拥挤距离机制进行增强,扩展了EDO的适用性。一种信息反馈机制(IFM)被集成到MOEDO中,旨在平衡探索和利用,从而提高收敛性并缓解局部最优停滞问题,这是传统方法中一个显著的局限性。我们的研究表明,MOEDO优于诸如MOMPA、NSGA-II、MOAOA、MOEA/D和MOGNDO等著名算法。在72.58%的测试场景中,利用基准测试集(DTLZ、ZDT和各种约束问题)以及五个实际工程设计挑战中的性能指标,如GD、IGD、HV、SP、SD和RT,这一点很明显。威尔科克森秩和检验(WRST)进一步证实MOEDO是一种具有竞争力的多目标优化算法,特别是在现有方法难以平衡多样性和收敛效率的场景中。MOEDO即使在复杂的实际应用中也具有强大的性能,突显了其作为优化领域创新解决方案的潜力。MOEDO的源代码可在以下网址获取:https://github.com/kanak02/MOEDO

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f2e/10799915/ae78c69e12c4/41598_2024_52083_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验