Suppr超能文献

基于集成变量选择的演化偏移检测。

Evolutionary shift detection with ensemble variable selection.

机构信息

Department of Mathematics and Statistics, Dalhousie University, Nova Scotia, Canada.

出版信息

BMC Ecol Evol. 2024 Jan 20;24(1):11. doi: 10.1186/s12862-024-02201-w.

Abstract

Abrupt environmental changes can lead to evolutionary shifts in trait evolution. Identifying these shifts is an important step in understanding the evolutionary history of phenotypes. The detection performances of different methods are influenced by many factors, including different numbers of shifts, shift sizes, where a shift occurs on a tree, and the types of phylogenetic structure. Furthermore, the model assumptions are oversimplified, so are likely to be violated in real data, which could cause the methods to fail. We perform simulations to assess the effect of these factors on the performance of shift detection methods. To make the comparisons more complete, we also propose an ensemble variable selection method (R package ELPASO) and compare it with existing methods (R packages [Formula: see text]1ou and PhylogeneticEM). The performances of methods are highly dependent on the selection criterion. [Formula: see text]1ou+pBIC is usually the most conservative method and it performs well when signal sizes are large. [Formula: see text]1ou+BIC is the least conservative method and it performs well when signal sizes are small. The ensemble method provides more balanced choices between those two methods. Moreover, the performances of all methods are heavily impacted by measurement error, tree reconstruction error and shifts in variance.

摘要

环境的突然变化会导致特征进化的进化转变。识别这些转变是理解表型进化历史的重要步骤。不同方法的检测性能受到许多因素的影响,包括转变的数量、转变的大小、转变发生在树上的位置以及系统发育结构的类型。此外,模型假设过于简化,因此很可能在实际数据中被违反,这可能导致方法失败。我们进行模拟以评估这些因素对转变检测方法性能的影响。为了使比较更加完整,我们还提出了一种集成变量选择方法(R 包 ELPASO),并将其与现有方法(R 包[Formula: see text]1ou 和 PhylogeneticEM)进行比较。方法的性能高度依赖于选择标准。[Formula: see text]1ou+pBIC 通常是最保守的方法,当信号大小较大时,它的性能良好。[Formula: see text]1ou+BIC 是最不保守的方法,当信号大小较小时,它的性能良好。集成方法在这两种方法之间提供了更平衡的选择。此外,所有方法的性能都受到测量误差、树重建误差和方差变化的严重影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/735d/10800078/e410158c650c/12862_2024_2201_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验