Suppr超能文献

基于腰椎 CT 的影像组学模型在老年骨质疏松症诊断中的应用。

Application of radiomics model based on lumbar computed tomography in diagnosis of elderly osteoporosis.

机构信息

Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.

Nantong University, Nantong, Jiangsu Province, China.

出版信息

J Orthop Res. 2024 Jun;42(6):1356-1368. doi: 10.1002/jor.25789. Epub 2024 Jan 21.

Abstract

A metabolic bone disease characterized by decreased bone formation and increased bone resorption is osteoporosis. It can cause pain and fracture of patients. The elderly are prone to osteoporosis and are more vulnerable to osteoporosis. In this study, radiomics are extracted from computed tomography (CT) images to screen osteoporosis in the elderly. Collect the plain scan CT images of lumbar spine, cut the region of interest of the image and extract radiomics features, use Lasso regression to screen variables and adjust complexity, use python language to model random forests, support vector machines, K nearest neighbor, and finally use receiver operating characteristic curve to evaluate the performance of the model, including precision, recall, accuracy and area under the curve (AUC). For the model, 14 radiolomics features were selected. The diagnosis performance of random forest model and support vector machine is good, all around 0.9. The AUC of K nearest neighbor model in training set and test set is 0.828 and 0.796, respectively. We selected the plain scan CT images of the elderly lumbar spine to build radiomics features model, which has good diagnostic performance and can be used as a tool to assist the diagnosis of osteoporosis in the elderly.

摘要

一种以骨形成减少和骨吸收增加为特征的代谢性骨病就是骨质疏松症。它会导致患者疼痛和骨折。老年人易患骨质疏松症,且更易骨质疏松。在这项研究中,从计算机断层扫描(CT)图像中提取放射组学特征,以筛选老年人的骨质疏松症。收集腰椎的平扫 CT 图像,切割图像的感兴趣区域并提取放射组学特征,使用 Lasso 回归筛选变量并调整复杂度,使用 python 语言建立随机森林、支持向量机、K 最近邻模型,最后使用接收者操作特征曲线评估模型的性能,包括精确率、召回率、准确率和曲线下面积(AUC)。对于该模型,选择了 14 个放射组学特征。随机森林模型和支持向量机的诊断性能良好,均接近 0.9。K 最近邻模型在训练集和测试集中的 AUC 分别为 0.828 和 0.796。我们选择老年人腰椎的平扫 CT 图像来建立放射组学特征模型,该模型具有良好的诊断性能,可作为辅助老年人骨质疏松症诊断的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验