《扩展描述性风险规避贝叶斯模型》:模拟复杂生物运动感知的一种更全面的方法。
"Extended Descriptive Risk-Averse Bayesian Model" a More Comprehensive Approach in Simulating Complex Biological Motion Perception.
作者信息
Misaghian Khashayar, Lugo J Eduardo, Faubert Jocelyn
机构信息
Sage-Sentinel Smart Solutions, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.
Faubert Lab, School of Optometry, Université de Montréal, C.P. 6128, Montreal, QC H3C 3J7, Canada.
出版信息
Biomimetics (Basel). 2024 Jan 3;9(1):27. doi: 10.3390/biomimetics9010027.
The ability to perceive biological motion is crucial for human survival, social interactions, and communication. Over the years, researchers have studied the mechanisms and neurobiological substrates that enable this ability. In a previous study, we proposed a descriptive Bayesian simulation model to represent the dorsal pathway of the visual system, which processes motion information. The model was inspired by recent studies that questioned the impact of dynamic form cues in biological motion perception and was trained to distinguish the direction of a soccer ball from a set of complex biological motion soccer-kick stimuli. However, the model was unable to simulate the reaction times of the athletes in a credible manner, and a few subjects could not be simulated. In this current work, we implemented a novel disremembering strategy to incorporate neural adaptation at the decision-making level, which improved the model's ability to simulate the athletes' reaction times. We also introduced receptive fields to detect rotational optic flow patterns not considered in the previous model to simulate a new subject and improve the correlation between the simulation and experimental data. The findings suggest that rotational optic flow plays a critical role in the decision-making process and sheds light on how different individuals perform at different levels. The correlation analysis of human versus simulation data shows a significant, almost perfect correlation between experimental and simulated angular thresholds and slopes, respectively. The analysis also reveals a strong relation between the average reaction times of the athletes and the simulations.
感知生物运动的能力对于人类生存、社交互动和交流至关重要。多年来,研究人员一直在研究促成这种能力的机制和神经生物学基础。在之前的一项研究中,我们提出了一个描述性贝叶斯模拟模型来表征视觉系统中处理运动信息的背侧通路。该模型的灵感来自于最近一些对生物运动感知中动态形式线索的影响提出质疑的研究,并经过训练以从一组复杂的生物运动足球踢球刺激中区分足球的方向。然而,该模型无法以可信的方式模拟运动员的反应时间,并且有几个受试者无法被模拟。在当前这项工作中,我们实施了一种新颖的遗忘策略,以便在决策层面纳入神经适应性,这提高了模型模拟运动员反应时间的能力。我们还引入了感受野来检测先前模型中未考虑的旋转光流模式,以模拟一个新的受试者并改善模拟与实验数据之间的相关性。研究结果表明,旋转光流在决策过程中起着关键作用,并揭示了不同个体在不同水平上的表现方式。对人类与模拟数据的相关性分析表明,实验和模拟的角度阈值及斜率之间分别存在显著的、几乎完美的相关性。该分析还揭示了运动员的平均反应时间与模拟结果之间存在密切关系。