Suppr超能文献

基于机器学习的第四代表皮生长因子受体(EGFR)抑制剂虚拟筛选与鉴定

Machine Learning-Based Virtual Screening and Identification of the Fourth-Generation EGFR Inhibitors.

作者信息

Chang Hao, Zhang Zeyu, Tian Jiaxin, Bai Tian, Xiao Zijie, Wang Dianpeng, Qiao Renzhong, Li Chao

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China.

出版信息

ACS Omega. 2024 Jan 2;9(2):2314-2324. doi: 10.1021/acsomega.3c06225. eCollection 2024 Jan 16.

Abstract

Epidermal growth factor receptor (EGFR) plays a pivotal regulatory role in treating patients with advanced nonsmall cell lung cancer (NSCLC). Following the emergence of the EGFR tertiary CIS C797S mutation, all types of inhibitors lose their inhibitory activity, necessitating the urgent development of new inhibitors. Computer systems employ machine learning methods to process substantial volumes of data and construct models that enable more accurate predictions of the outcomes of new inputs. The purpose of this article is to uncover innovative fourth-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with the aid of machine learning techniques. The paper's data set was high-dimensional and sparse, encompassing both structured and unstructured descriptors. To address this considerable challenge, we introduced a fusion framework to select critical molecule descriptors by integrating the full quadratic effect model and the Lasso model. Based on structural descriptors obtained from the full quadratic effect model, we conceived and synthesized a variety of small-molecule inhibitors. These inhibitors demonstrated potent inhibitory effects on the two mutated kinases L858R/T790M/C797S and Del19/T790M/C797S. Moreover, we applied our model to virtual screening, successfully identifying four hit compounds. We have evaluated these hit ADME characteristics and look forward to conducting activity evaluations on them in the future to discover a new generation of EGFR-TKI.

摘要

表皮生长因子受体(EGFR)在晚期非小细胞肺癌(NSCLC)患者的治疗中发挥着关键的调节作用。随着EGFR三级顺式C797S突变的出现,所有类型的抑制剂都失去了抑制活性,因此迫切需要开发新的抑制剂。计算机系统采用机器学习方法来处理大量数据,并构建能够更准确预测新输入结果的模型。本文的目的是借助机器学习技术发现创新的第四代表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKIs)。该论文的数据集是高维和稀疏的,包含结构化和非结构化描述符。为应对这一巨大挑战,我们引入了一个融合框架,通过整合全二次效应模型和套索模型来选择关键分子描述符。基于从全二次效应模型获得的结构描述符,我们构思并合成了多种小分子抑制剂。这些抑制剂对两种突变激酶L858R/T790M/C797S和Del19/T790M/C797S表现出强大的抑制作用。此外,我们将我们的模型应用于虚拟筛选,成功鉴定出四种命中化合物。我们已经评估了这些命中化合物的ADME特性,并期待未来对它们进行活性评估,以发现新一代的EGFR-TKI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe74/10795152/e0a226da5224/ao3c06225_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验