Batool Hira, Majid Abdul, Ahmad Sheraz, Mubeen Adil, Alkhedher Mohammad, Saeed Waseem Sharaf, Al-Owais Ahmad Abdulaziz, Afzal Aqeel
Department of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan.
Mechanical and Industrial Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates.
ACS Omega. 2024 Jan 3;9(2):2457-2467. doi: 10.1021/acsomega.3c06913. eCollection 2024 Jan 16.
This study reports first-principles predictions as well as experimental synthesis of manganese oxide nanoparticles under different conditions. The theoretical part of the work comprised density functional theory (DFT)-based calculations and first-principles molecular dynamics (MD) simulations. The extensive research efforts and the current challenges in enhancing the performance of the lithium-ion battery (LIB) provided motivation to explore the potential of these materials for use as an anode in the battery. The structural analysis of the synthesized samples carried out using X-ray diffraction (XRD) confirmed the tetragonal structure of MnO on heating at 450 and 550 °C and the cubic structure of MnO on heating at 650 °C. The structures are found in the form of nanoparticles at 450 and 550 °C, but at 650 °C, the material appeared in the form of a nanoporous structure. Further, we investigated the electrochemical functionality of MnO and MnO as anode materials for utilization in LIBs via MD simulations. Based on the investigations of their electrical, structural, diffusion, and storage behavior, the anodic character of MnO and MnO is predicted. The findings indicated that 10 lithium atoms adsorb on MnO, whereas 5 lithium atoms adsorb on MnO when saturation is taken into account. The storage capacities of MnO and MnO are estimated to be 1697 and 585 mAh g, respectively. The maximum value of lithium insertion voltage per Li in MnO is 0.93 and 0.22 V in MnO. Further, the diffusion coefficient values are found as 2.69 × 10 and 2.65 × 10 m s for MnO and MnO, respectively, at 300 K. The climbing image nudged elastic band method (Cl-NEB) was implemented, which revealed activation energy barriers of Li as 0.30 and 0.75 eV for MnO and MnO, respectively. The findings of the work revealed high specific capacity, low Li diffusion energy barrier, and low open circuit voltage for the MnO-based anode for use in LIBs.
本研究报告了在不同条件下氧化锰纳米颗粒的第一性原理预测以及实验合成。该工作的理论部分包括基于密度泛函理论(DFT)的计算和第一性原理分子动力学(MD)模拟。在提高锂离子电池(LIB)性能方面的广泛研究努力和当前挑战,促使人们探索这些材料用作电池阳极的潜力。使用X射线衍射(XRD)对合成样品进行的结构分析证实,在450和550℃加热时MnO为四方结构,在650℃加热时MnO为立方结构。在450和550℃时,结构以纳米颗粒的形式存在,但在650℃时,材料呈现纳米多孔结构的形式。此外,我们通过MD模拟研究了MnO和MnO作为LIBs阳极材料的电化学功能。基于对它们的电学、结构、扩散和存储行为的研究,预测了MnO和MnO的阳极特性。研究结果表明,考虑到饱和度时,10个锂原子吸附在MnO上,而5个锂原子吸附在MnO上。MnO和MnO的存储容量估计分别为1697和585 mAh g。MnO中每个Li的最大锂插入电压值为0.93 V,MnO中为0.22 V。此外,在300 K时,MnO和MnO的扩散系数值分别为2.69×10和2.65×10 m²/s。采用了爬坡图像推挤弹性带方法(Cl-NEB),结果表明MnO和MnO中Li的活化能垒分别为0.30和0.75 eV。该工作的研究结果表明,用于LIBs的MnO基阳极具有高比容量、低Li扩散能垒和低开路电压。