Suppr超能文献

用于鉴定 HCoVs 和 SARSr-CoV-2 谱系中的 SARS-CoV-2 的 RNA 条码片段。

RNA barcode segments for SARS-CoV-2 identification from HCoVs and SARSr-CoV-2 lineages.

机构信息

College of Biology, Hunan University, Changsha, 410082, China.

College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.

出版信息

Virol Sin. 2024 Feb;39(1):156-168. doi: 10.1016/j.virs.2024.01.006. Epub 2024 Jan 20.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible for coronavirus disease 2019 (COVID-19), continues to evolve, giving rise to more variants and global reinfections. Previous research has demonstrated that barcode segments can effectively and cost-efficiently identify specific species within closely related populations. In this study, we designed and tested RNA barcode segments based on genetic evolutionary relationships to facilitate the efficient and accurate identification of SARS-CoV-2 from extensive virus samples, including human coronaviruses (HCoVs) and SARSr-CoV-2 lineages. Nucleotide sequences sourced from NCBI and GISAID were meticulously selected and curated to construct training sets, encompassing 1733 complete genome sequences of HCoVs and SARSr-CoV-2 lineages. Through genetic-level species testing, we validated the accuracy and reliability of the barcode segments for identifying SARS-CoV-2. Subsequently, 75 main and subordinate species-specific barcode segments for SARS-CoV-2, located in ORF1ab, S, E, ORF7a, and N coding sequences, were intercepted and screened based on single-nucleotide polymorphism sites and weighted scores. Post-testing, these segments exhibited high recall rates (nearly 100%), specificity (almost 30% at the nucleotide level), and precision (100%) performance on identification. They were eventually visualized using one and two-dimensional combined barcodes and deposited in an online database (http://virusbarcodedatabase.top/). The successful integration of barcoding technology in SARS-CoV-2 identification provides valuable insights for future studies involving complete genome sequence polymorphism analysis. Moreover, this cost-effective and efficient identification approach also provides valuable reference for future research endeavors related to virus surveillance.

摘要

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)是导致 2019 年冠状病毒病(COVID-19)的病原体,它仍在不断进化,产生了更多的变体和全球再感染。先前的研究表明,条码片段可以有效地、经济高效地识别密切相关种群中的特定物种。在这项研究中,我们根据遗传进化关系设计和测试了 RNA 条码片段,以促进从广泛的病毒样本中高效、准确地识别 SARS-CoV-2,包括人类冠状病毒(HCoVs)和 SARSr-CoV-2 谱系。从 NCBI 和 GISAID 中获取的核苷酸序列经过精心选择和整理,构建了包含 1733 个 HCoVs 和 SARSr-CoV-2 谱系完整基因组序列的训练集。通过基于遗传水平的物种测试,我们验证了条码片段识别 SARS-CoV-2 的准确性和可靠性。随后,根据单核苷酸多态性位点和加权分数,从 ORF1ab、S、E、ORF7a 和 N 编码序列中截取和筛选了 75 个主要和次要的 SARS-CoV-2 种特异性条码片段。经过测试,这些片段在识别方面表现出了高召回率(接近 100%)、特异性(在核苷酸水平上几乎 30%)和精度(100%)。最后,使用一维和二维组合条码对它们进行了可视化处理,并将其存入在线数据库(http://virusbarcodedatabase.top/)。条码技术在 SARS-CoV-2 识别中的成功整合为未来涉及完整基因组序列多态性分析的研究提供了有价值的见解。此外,这种经济高效且高效的识别方法也为未来与病毒监测相关的研究提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3591/10877444/320bc939efb2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验