Suppr超能文献

通过机器学习理清必需基因的语境特异性:一种建设性的经验。

Untangling the Context-Specificity of Essential Genes by Means of Machine Learning: A Constructive Experience.

机构信息

Institute for High-Performance Computing and Networking (ICAR), National Research Council (CNR), V. Pietro Castellino 111, 80131 Naples, Italy.

出版信息

Biomolecules. 2023 Dec 22;14(1):18. doi: 10.3390/biom14010018.

Abstract

Gene essentiality is a genetic concept crucial for a comprehensive understanding of life and evolution. In the last decade, many essential genes (EGs) have been determined using different experimental and computational approaches, and this information has been used to reduce the genomes of model organisms. A growing amount of evidence highlights that essentiality is a property that depends on the context. Because of their importance in vital biological processes, recognising context-specific EGs (csEGs) could help for identifying new potential pharmacological targets and to improve precision therapeutics. Since most of the computational procedures proposed to identify and predict EGs neglect their context-specificity, we focused on this aspect, providing a theoretical and experimental overview of the literature, data and computational methods dedicated to recognising csEGs. To this end, we adapted existing computational methods to exploit a specific context (the kidney tissue) and experimented with four different prediction methods using the labels provided by four different identification approaches. The considerations derived from the analysis of the obtained results, confirmed and validated also by further experiments for a different tissue context, provide the reader with guidance on exploiting existing tools for achieving csEGs identification and prediction.

摘要

基因的必需性是一个对于全面理解生命和进化至关重要的遗传概念。在过去的十年中,已经使用了不同的实验和计算方法来确定许多必需基因(EGs),并且这些信息被用于简化模型生物的基因组。越来越多的证据强调,必需性是一种依赖于上下文的属性。由于它们在重要的生物过程中的重要性,识别上下文特定的必需基因(csEGs)有助于确定新的潜在药物靶点,并提高精准治疗的效果。由于大多数用于识别和预测 EGs 的计算程序都忽略了它们的上下文特异性,因此我们专注于这一方面,提供了文献、数据和专门用于识别 csEGs 的计算方法的理论和实验概述。为此,我们适应了现有的计算方法,以利用特定的上下文(肾脏组织),并使用四个不同的识别方法提供的标签,用四种不同的预测方法进行了实验。从获得的结果分析中得出的考虑因素,以及为不同的组织上下文进行的进一步实验的确认和验证,为读者提供了有关利用现有工具实现 csEGs 识别和预测的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d9/10813179/313ab8b67a65/biomolecules-14-00018-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验