Suppr超能文献

使用人工智能预测肝大部切除术的安全肝切除体积

Predicting Safe Liver Resection Volume for Major Hepatectomy Using Artificial Intelligence.

作者信息

Kang Chol Min, Ku Hyung June, Moon Hyung Hwan, Kim Seong-Eun, Jo Ji Hoon, Choi Young Il, Shin Dong Hoon

机构信息

Department of Applied Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21287, USA.

Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan 49267, Republic of Korea.

出版信息

J Clin Med. 2024 Jan 10;13(2):381. doi: 10.3390/jcm13020381.

Abstract

(1) Background: Advancements in the field of liver surgery have led to a critical need for precise estimations of preoperative liver function to prevent post-hepatectomy liver failure (PHLF), a significant cause of morbidity and mortality. This study introduces a novel application of artificial intelligence (AI) in determining safe resection volumes according to a patient's liver function in major hepatectomies. (2) Methods: We incorporated a deep learning approach, incorporating a unique liver-specific loss function, to analyze patient characteristics, laboratory data, and liver volumetry from computed tomography scans of 52 patients. Our approach was evaluated against existing machine and deep learning techniques. (3) Results: Our approach achieved 68.8% accuracy in predicting safe resection volumes, demonstrating superior performance over traditional models. Furthermore, it significantly reduced the mean absolute error in under-predicted volumes to 23.72, indicating a more precise estimation of safe resection limits. These findings highlight the potential of integrating AI into surgical planning for liver resections. (4) Conclusion: By providing more accurate predictions of safe resection volumes, our method aims to minimize the risk of PHLF, thereby improving clinical outcomes for patients undergoing hepatectomy.

摘要

(1) 背景:肝脏手术领域的进展使得精确评估术前肝功能变得至关重要,以预防肝切除术后肝功能衰竭(PHLF),这是发病率和死亡率的一个重要原因。本研究介绍了人工智能(AI)在根据患者肝功能确定大肝切除术中安全切除体积方面的一种新应用。(2) 方法:我们采用了一种深度学习方法,纳入了独特的肝脏特异性损失函数,以分析52例患者的计算机断层扫描图像中的患者特征、实验室数据和肝脏容积测量数据。我们的方法与现有的机器学习和深度学习技术进行了比较评估。(3) 结果:我们的方法在预测安全切除体积方面达到了68.8%的准确率,表现优于传统模型。此外,它将预测不足体积的平均绝对误差显著降低至23.72,表明对安全切除限度的估计更为精确。这些发现凸显了将人工智能整合到肝脏切除手术规划中的潜力。(4) 结论:通过提供更准确的安全切除体积预测,我们的方法旨在将PHLF的风险降至最低,从而改善肝切除患者的临床结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/256e/10816299/f3db2635d100/jcm-13-00381-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验